Browsing by Author "Calarco, Jeanette"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality ControlLiguori, Krista; Keenum, Ishi M.; Davis, Benjamin C.; Calarco, Jeanette; Milligan, Erin; Harwood, Valerie J.; Pruden, Amy (American Chemical Society, 2022-06)Antimicrobial resistance (AMR) is a grand societal challenge with important dimensions in the water environment that contribute to its evolution and spread. Environmental monitoring could provide vital information for mitigating the spread of AMR; this includes assessing antibiotic resistance genes (ARGs) circulating among human populations, identifying key hotspots for evolution and dissemination of resistance, informing epidemiological and human health risk assessment models, and quantifying removal efficiencies by domestic wastewater infrastructure. However, standardized methods for monitoring AMR in the water environment will be vital to producing the comparable data sets needed to address such questions. Here we sought to establish scientific consensus on a framework for such standardization, evaluating the state of the science and practice of AMR monitoring of wastewater, recycled water, and surface water, through a literature review, survey, and workshop leveraging the expertise of academic, governmental, consulting, and water utility professionals.
- Comparison of Cefotaxime-Resistant Escherichia coli and sul1 and intI1 by qPCR for Monitoring of Antibiotic Resistance of Wastewater, Surface Water, and Recycled WaterLiguori, Krista; Calarco, Jeanette; Maldonado Rivera, Gabriel; Kurowski, Anna; Keenum, Ishi M.; Davis, Benjamin C.; Harwood, Valerie J.; Pruden, Amy (MDPI, 2023-07-29)Awareness of the need for surveillance of antimicrobial resistance (AMR) in water environments is growing, but there is uncertainty regarding appropriate monitoring targets. Adapting culture-based fecal indicator monitoring to include antibiotics in the media provides a potentially low-tech and accessible option, while quantitative polymerase chain reaction (qPCR) targeting key genes of interest provides a broad, quantitative measure across the microbial community. The purpose of this study was to compare findings obtained from the culture of cefotaxime-resistant (cefR) Escherichia coli with two qPCR methods for quantification of antibiotic resistance genes across wastewater, recycled water, and surface waters. The culture method was a modification of US EPA Method 1603 for E. coli, in which cefotaxime is included in the medium to capture cefR strains, while qPCR methods quantified sul1 and intI1. A common standard operating procedure for each target was applied to samples collected by six water utilities across the United States and processed by two laboratories. The methods performed consistently, and all three measures reflected the same overarching trends across water types. The qPCR detection of sul1 yielded the widest dynamic range of measurement as an AMR indicator (7-log versus 3.5-log for cefR E. coli), while intI1 was the most frequently detected target (99% versus 96.5% and 50.8% for sul1 and cefR E. coli, respectively). All methods produced comparable measurements between labs (p < 0.05, Kruskal–Wallis). Further study is needed to consider how relevant each measure is to capturing hot spots for the evolution and dissemination of AMR in the environment and as indicators of AMR-associated human health risk.
- A framework for standardized qPCR-targets and protocols for quantifying antibiotic resistance in surface water, recycled water and wastewaterKeenum, Ishi M.; Liguori, Krista; Calarco, Jeanette; Davis, Benjamin C.; Milligan, Erin; Harwood, Valerie J.; Pruden, Amy (Taylor & Francis, 2022-01-16)Water environments are increasingly recognized as a conduit for the spread of antibiotic resistance, but there is need to standardize antibiotic resistance monitoring protocols to ensure comparability across studies. Quantitative polymerase chain reaction (qPCR) is attractive as a sensitive means of quantifying antibiotic resistance genes (ARGs) and has been applied broadly over the past two decades to various water matrices. QPCR avoids challenges and biases associated with culture-based methods, providing a reproducible and highly sensitive measure of ARGs carried across a bacterial community. However, there are numerous quality assurance and other aspects of protocols that need to be addressed to ensure that measurements are representative and comparable across studies. Here we conducted a critical review to identify gene targets that are most commonly measured by qPCR to quantify antibiotic resistance in surface water, recycled water, and wastewater and to assess corresponding protocols. Identified targets monitored in water samples included sul1, tetA, and intI1, given their abundance and tendency to correlate with anthropogenic inputs, and vanA and blaCTX-M, as more rarely detected, but highly clinically-relevant targets. We identified 117 peer-reviewed studies meeting search criteria for application of these assays to water matrices of interest and systematically assessed the corresponding protocols, including sample collection and concentration, DNA extraction, primer/probe specificity, amplification conditions, amplicon length, PCR inhibition evaluation, and limit of detection/quantification. Gene copy numbers reported across studies were further compared by assay and water matrix. Based on this comprehensive evaluation, we recommend assays, standardized workflows, and reporting for the five target genes.