Browsing by Author "Calder, Ryan S. D."
Now showing 1 - 20 of 31
Results Per Page
Sort Options
- Aligning evidence generation and use across health, development, and environmentTallis, Heather; Kreis, Katharine; Olander, Lydia P.; Ringler, Claudia; Ameyaw, David; Borsuk, Mark E.; Fletschner, Diana; Game, Edward; Gilligan, Daniel O.; Jeuland, Marc; Kennedy, Gina; Masuda, Yuta J.; Mehta, Sumi; Miller, Nicholas; Parker, Megan; Pollino, Carmel; Rajaratnam, Julie; Wilkie, David; Zhang, Wei; Ahmed, Selena; Ajayi, Oluyede C.; Alderman, Harold; Arhonditsis, George; Azevedo, Ines; Badola, Ruchi; Bailis, Rob; Balvanera, Patricia; Barbour, Emily; Bardini, Mark; Barton, David N.; Baumgartner, Jill; Benton, Tim G.; Bobrow, Emily; Bossio, Deborah; Bostrom, Ann; Braimoh, Ademola; Brondizio, Eduardo; Brown, Joe; Bryant, Benjamin P.; Calder, Ryan S. D.; Chaplin-Kramer, Becky; Cullen, Alison; DeMello, Nicole; Dickinson, Katherine L.; Ebi, Kristie L.; Eves, Heather E.; Fanzo, Jessica; Ferraro, Paul J.; Fisher, Brendan; Frongillo, Edward A.; Galford, Gillian; Garrity, Dennis; Gatere, Lydiah; Grieshop, Andrew P.; Grigg, Nicola J.; Groves, Craig; Gugerty, Mary Kay; Hamm, Michael; Hou, Xiaoyue; Huang, Cindy; Imhoff, Marc; Jack, Darby; Jones, Andrew D.; Kelsey, Rodd; Kothari, Monica; Kumar, Ritesh; Lachat, Carl; Larsen, Ashley E.; Lawrence, Mark; DeClerck, Fabrice; Levin, Phillip S.; Mabaya, Edward; Gibson, Jacqueline MacDonald; McDonald, Robert; Mace, Georgina; Maertens, Ricardo; Mangale, Dorothy; Martino, Robin; Mason, Sara A.; Mehta, Lyla; Meinzen-Dick, Ruth; Merz, Barbara; Msangi, Siwa; Murray, Grant; Murray, Kris A.; Naude, Celeste E.; Newlands, Nathaniel K.; Nkonya, Ephraim; Peterman, Amber; Petruney, Tricia; Possingham, Hugh; Puri, Jyotsna; Remans, Roseline; Remlinger, Lisa; Ricketts, Taylor H.; Reta, Bedilu; Robinson, Brian E.; Roe, Dilys; Rosenthal, Joshua; Shen, Guofeng; Shindell, Drew; Stewart-Koster, Ben; Sunderland, Terry; Sutherland, William J.; Tewksbury, Joshua; Wasser, Heather; Wear, Stephanie; Webb, Chris; Whittington, Dale; Wilkerson, Marit; Wittmer, Heidi; Wood, Benjamin DK K.; Wood, Stephen; Wu, Joyce; Yadama, Gautam; Zobrist, Stephanie (Elsevier, 2019-08-01)Although health, development, and environment challenges are interconnected, evidence remains fractured across sectors due to methodological and conceptual differences in research and practice. Aligned methods are needed to support Sustainable Development Goal advances and similar agendas. The Bridge Collaborative, an emergent research-practice collaboration, presents principles and recommendations that help harmonize methods for evidence generation and use. Recommendations were generated in the context of designing and evaluating evidence of impact for interventions related to five global challenges (stabilizing the global climate, making food production sustainable, decreasing air pollution and respiratory disease, improving sanitation and water security, and solving hunger and malnutrition) and serve as a starting point for further iteration and testing in a broader set of contexts and disciplines. We adopted six principles and emphasize three methodological recommendations: (1) creation of compatible results chains, (2) consideration of all relevant types of evidence, and (3) evaluation of strength of evidence using a unified rubric. We provide detailed suggestions for how these recommendations can be applied in practice, streamlining efforts to apply multi-objective approaches and/or synthesize evidence in multidisciplinary or transdisciplinary teams. These recommendations advance the necessary process of reconciling existing evidence standards in health, development, and environment, and initiate a common basis for integrated evidence generation and use in research, practice, and policy design.
- AMS Community Synthesis on GeohealthSeitter, Keith E.; Tipton, Emma; Higgins, Paul; White, Lauren; Miller, Andy (American Meteorological Society, 2022-04-20)The Earth system and human health are inextricably linked. In this period of widespread and rapid global change, understanding the challenges and opportunities at the intersection of health, geoscience, and the Earth system (broadly termed “geohealth”) has taken on a new level of importance. Scientific discovery and innovation can play a key role in helping humanity understand and respond to environmental, technological, and societal drivers of global changes so as to enable security, prosperity, and positive health outcomes for all. This American Meteorological Society Policy Program study synthesizes input from the AMS community on the various connections, gaps, and opportunities that currently exist at the geohealth interface. It was carried out in an accelerated time frame in response to a request from the National Science Foundation for rapid community input. Through these community discussions this study identifies: 1) a set of critical throughlines for effective convergence in geohealth research, 2) overarching challenges that currently impede progress, and 3) potential solution areas where significant progress might be made quickly.
- Analysis of environmental and economic impacts of hydropower imports for New York City through 2050Calder, Ryan S. D.; Borsuk, Mark E.; Robinson, Celine (Duke University Nicholas Institute for Environmental Policy Solutions, 2020-10-13)Indian Point Energy Center (IPEC), a nuclear generating facility that has provided roughly 15 TW·h per year of low-emissions power to the New York City area, will close by 2021. There has been debate over the potential responses to the closure of IPEC which include the development of new generation and transmission infrastructure. This derives in part from difficulties in comparing direct and indirect costs and benefits and environmental and social impacts, which vary substantially across energy alternatives. In particular, the potential role of increased imports of hydropower from Canada to the New York City area has been controversial because of large upfront capital costs and uncertain benefits relative to alternatives such as increased build-out of Downstate New York offshore wind and solar.
- Anticipating and adapting to the future impacts of climate change on the health, security and welfare of low elevation coastal zone (LECZ) communities in Southeastern USAAllen, Thomas; Behr, Joshua; Bukvic, Anamaria; Calder, Ryan S. D.; Caruson, Kiki; Connor, Charles; D'Elia, Christopher; Dismukes, David; Ersing, Robin; Franklin, Rima; Goldstein, Jesse; Goodall, Jonathon; Hemmerling, Scott; Irish, Jennifer L.; Lazarus, Steven; Loftis, Derek; Luther, Mark; McCallister, Leigh; McGlathery, Karen; Mitchell, Molly; Moore, William B.; Nichols, C. Reid; Nunez, Karinna; Reidenbach, Matthew; Shortridge, Julie; Weisberg, Robert; Weiss, Robert; Donelson Wright, Lynn; Xia, Meng; Xu, Kehui; Young, Donald; Zarillo, Gary; Zinnert, Julie C. (MDPI, 2021-10-29)Low elevation coastal zones (LECZ) are extensive throughout the southeastern United States. LECZ communities are threatened by inundation from sea level rise, storm surge, wetland degradation, land subsidence, and hydrological flooding. Communication among scientists, stakeholders, policy makers and minority and poor residents must improve. We must predict processes spanning the ecological, physical, social, and health sciences. Communities need to address linkages of (1) human and socioeconomic vulnerabilities; (2) public health and safety; (3) economic concerns; (4) land loss; (5) wetland threats; and (6) coastal inundation. Essential capabilities must include a network to assemble and distribute data and model code to assess risk and its causes, support adaptive management, and improve the resiliency of communities. Better communication of information and understanding among residents and officials is essential. Here we review recent background literature on these matters and offer recommendations for integrating natural and social sciences. We advocate for a cyber-network of scientists, modelers, engineers, educators, and stakeholders from academia, federal state and local agencies, non-governmental organizations, residents, and the private sector. Our vision is to enhance future resilience of LECZ communities by offering approaches to mitigate hazards to human health, safety and welfare and reduce impacts to coastal residents and industries.
- Assessing Ecosystem Service Benefits from Military InstallationsKagan, James; Borsuk, Mark E.; Calder, Ryan S. D.; Creutzburg, Megan; Mason, Sara A.; Olander, Lydia P.; Plantinga, Andrew; Robinson, Celine (2019-07-26)Military bases provide substantial ecosystem services to local communities and other members of the public. This project conceptualizes and quantifies ecosystem services provided by U.S. military bases developing an integrated modeling platform called MoTIVES (Model-based Tracking and Integrated Valuation of Ecosystem Services). MoTIVES manages probabilistic simulations of biophysical and economic models for relevant ecosystem services provided by alternative base management scenarios, and then assigns values where valuation is possible. The project demonstrated a proof of concept at Eglin Air Force Base, showing that current management provides approximately $110 million in ecosystem services per year, $40 million more than a scenario where no base was present, and $90 million more than a scenario where no base management was occurring.
- Canada ignores Muskrat Falls at its perilCalder, Ryan S. D. (The Telegram, 2019-10-07)
- Canadian hydroelectricity imports to the U.S.; Modeling of hourly carbon emissions reduction in New EnglandMortazavigazar, Amir; Calder, Ryan S. D.; Howarth, Rich B.; Jackson, Chloe A.; Mavrommati, Georgia (2024-04-05)United States’ hydroelectricity imports from Canada have increased by > 1 TWh per year between 2007 and 2021. This occurs as policymakers in the U.S. try to ramp up the deployment of new carbon free electricity generation and transmission infrastructure. Furthermore, recent modeling in the northeast U.S. demonstrates that Canadian hydroelectricity will play a significant role in New England’s least-cost decarbonization scenario. Additionally, decarbonization targets are well- defined in all states within the New England region, making it a priority. Consequently, it is anticipated that more hydroelectricity will flow from Canada into New England, resulting in the expansion of transborder electricity interconnections. To characterize the costs and benefits of such projects as compared to alternatives, a high-resolution simulation (i.e., hourly) of the electric grid is needed. In this study, we utilize the U.S. Environmental Protection Agency's dataset on hourly electricity generation and carbon emissions. Using pre-established decarbonization scenarios, we can calculate the precise reduction in greenhouse gas and air pollutant emissions for each scenario. Our preliminary results demonstrate that the scenario projection for 2026–2027 by New England ISO, which involves a combination of Canadian hydroelectric imports (2100 MW summer, 826 MW winter), new wind (308 MW summer and 682 MW), and solar (92 MW summer, 28 MW winter) generation commitments, can effectively offset carbon emissions in New England. These results further support the current decarbonization policy, which relies on a diversified mix of carbon free electricity sources.
- Canadian hydropower and the U.S. energy transition: controversies, opportunities, and strategic research directionsCalder, Ryan S. D.; Borsuk, Mark E.; Mortazavigazar, Amir; Howarth, Richard B.; Jackson, Chloe; Mavrommati, Georgia (2023-12-13)Recent modeling for the northeast United States suggests that the least-cost decarbonization pathway involves a combination of build-out of domestic renewables generation and increased intertie capacity with Canada. U.S. imports of Canadian hydropower have increased by > 1 TWh per year between 2007–2021 because it is a cost-effective and low-carbon alternative to domestic fossil fuel generation. Yet, increased interconnection capacity and imports are controversial and have been opposed by U.S. environmental groups and members of the public. Development of new hydroelectric reservoirs disrupts foodways and lifeways of Indigenous populations and has greenhouse gas impacts greater than wind and solar (though less than fossil fuel alternatives). Two recently cancelled hydropower transmission projects linking New England and Quebec, Canada demonstrate the need to better understand the gap between pathways that appear optimal from the perspective of energy systems modeling and the pathways that will ultimately be socially and environmentally acceptable. The experience of the northeast mirrors that in other parts of the U.S. where substantial resources have been invested in pursuit of renewable projects that are ultimately abandoned following mobilization of stakeholders with adverse interests or values. A research program integrating environmental and economic modeling seeks to resolve controversies surrounding the use of Canadian hydropower in U.S. energy transitions. This includes conceptual disputes over valuation of hydropower from existing reservoirs in cost-benefit analysis; debates over whether new transmission infrastructure stimulates new generation capacity; and analysis of the relative importance of different benefits and impacts to the public.
- Causal inference to scope environmental impact assessment in multisector systems: the case of trans-border hydropower exportsMortazavigazar, Amir; Calder, Ryan S. D. (2022-12-15)Decarbonization of the United States’ electricity sector will require trillions of dollars of investment in generation and transmission infrastructure. The National Environmental Policy Act (NEPA) requires proponents of many major projects to complete environmental impact statements (EIS) that address reasonably foreseeable impacts, regardless of where these impacts occur. There has been controversy over the cause-effect relationships among electrical supply, electrical demand, apparent cost, and other variables given the complex interactions between them. Therefore, the range of environmental impacts attributable to new infrastructure projects is subject to frequent disagreements. In this work, we address increasing U.S. imports of Canadian hydropower in the setting of falling prices and surplus generation. There has been controversy as to whether new transmission capacity stimulates new generation capacity, and thus whether generation-side environmental and health impacts must be assessed in the scope of incremental transmission projects. We have developed a rich longitudinal database of variables related to generation capacity, export volume, retail prices, and climate over the period 1979 to 2021. We have applied a novel multivariable wide neural network machine learning methodology to evaluate alternative causal models for the evolution of the electricity system and the role of new transmission infrastructure. We find no evidence that transmission capacity stimulates generation capacity. Rather, generation capacity growth in Canada is triggered primarily by domestic price signals and climate parameters, with trans-border transmission capacity developed primarily to absorb excess generation potential. This work supports a relatively narrow scope for EIS related to trans-border transmission projects. More generally, this analysis demonstrates how causal inference methods may help build consensus around the appropriate scope of EIS for highly interconnected energy and infrastructure projects.
- Challenges to a Sustainable Energy FutureViere, Erin; Chen, Junqin; Deng, Simeng; Hansen, Asger; Hiltbrand, Galen; Maddex, Sean; Lecaros, Santiago; Calder, Ryan S. D. (Duke University, 2020-10-31)Hydropower accounts for 71% of renewable electrical generation worldwide, and installed capacity may more than double by 2050. Major hydroelectric projects involve construction of reservoirs to buffer the periodicity of river discharge, meaning hydropower typically does not suffer from supply intermittency of other renewables such as wind and solar. Meanwhile, average greenhouse gas emissions are likely substantially lower than fossil fuel alternatives per unit energy produced. Domestic hydropower production in the United States is unlikely to increase substantially in the foreseeable future, but imports from Canada play an increasingly important role in achieving renewable energy targets in northern U.S. markets...
- Coupled Human-Natural Modeling for Hydroelectric Development: Understanding the Health Impacts of America’s Renewable Energy ImportsCalder, Ryan S. D. (Duke University, 2019)Hydropower accounts for 71% of renewable electrical generation worldwide, and installed capacity may more than double by 2050. Major hydroelectric projects involve construction of reservoirs to buffer the periodicity of river discharge, meaning hydropower typically does not suffer from supply intermittency of other renewables such as wind and solar. Meanwhile, average greenhouse gas emissions are likely substantially lower than fossil fuel alternatives per unit energy produced. Domestic hydropower production in the United States is unlikely to increase substantially in the foreseeable future, but imports from Canada play an increasingly important role in achieving renewable energy targets in northern U.S. markets....
- COVID-19 Reveals Vulnerabilities of the Food–Energy–Water Nexus to Viral PandemicsCalder, Ryan S. D.; Grady, Caitlin; Jeuland, Marc; Kirchhoff, Christine J.; Hale, Rebecca L.; Muenich, Rebecca L. (American Chemical Society, 2021)Food, energy, and water (FEW) sectors are inextricably linked, making one sector vulnerable to disruptions in another. Interactions between FEW systems, viral pandemics, and human health have not been widely studied. We mined scientific and news/media articles for causal relations among FEW and COVID-19 variables and qualitatively characterized system dynamics. Food systems promoted the emergence and spread of COVID-19, leading to illness and death. Major supply-side breakdowns were avoided (likely due to low morbidity/mortality among working-age people). However, COVID-19 and physical distancing disrupted labor and capital inputs and stressed supply chains, while creating economic insecurity among the already vulnerable poor. This led to demand-side FEW insecurities, in turn increasing susceptibility to COVID-19 among people with many comorbidities. COVID-19 revealed trade-offs such as allocation of water to hygiene versus to food production and disease burden avoided by physical distancing versus disease burden from increased FEW insecurities. News/media articles suggest great public interest in FEW insecurities triggered by COVID-19 interventions among individuals with low COVID-19 case-fatality rates. There is virtually no quantitative analysis of any of these trade-offs or feedbacks. Enhanced quantitative FEW and health models are urgently needed as future pandemics are likely and may have greater morbidity and mortality than COVID-19.
- Decarbonization via long-distance transmission of hydropower is cost-effectiveCalder, Ryan S. D.; Robinson, Celine; Borsuk, Mark E. (2021-12-14)Hydropower is associated with substantially lower carbon emissions than fossil fuels and can satisfy baseload electricity demand unlike wind and solar power. In the northern United States, imports of Canadian hydropower account for a large and growing share of the electricity portfolio. For example, in New England, Canadian hydropower increased from 10% to 21% of electricity supplied to consumers between 2010 and 2020. These imports are increasingly dependent on capital-intensive long-distance transmission projects between the Canadian border and U.S. urban centers. While costs of these projects are clearly defined in dollars, benefits accrue in diverse forms, ranging from avoided air pollution and greenhouse gas emissions to reduced fuel and operation costs. This severely complicates cost-benefit analysis and has led to controversy over the role of Canadian hydropower in U.S. renewable energy transitions. We develop a probabilistic, multiattribute economic valuation model to explicitly compare direct and environmental costs and benefits of energy transition scenarios. We apply this model to the New York City area, where the recent closure of a ~2,000 MW nuclear power plant has increased demand for fossil fuel generation, and a proposed $4-billion long-distance hydropower transmission project has caused disagreement among environmental groups and other stakeholders. We find that coupling long-distance hydropower transmission with planned build-out of wind and solar reduces net total costs over 2021-2050 on the order of tens of billions of dollars, primarily due to avoided greenhouse gas emissions and air pollution whose economic value outweighs the added upfront capital costs. Long-distance hydropower transmission averts health and property impacts of air pollution from fossil fuel generators associated with an economic value on the order of hundreds of millions of dollars concentrated in vulnerable communities facing disproportionate environmental risks. These findings are robust to an extensive sensitivity analysis. This model provides a novel, transparent framework for supporting decision-making about long-distance hydropower transmission elsewhere.
- Decision support for United States – Canada energy integration is impaired by fragmentary environmental and electricity system modeling capacityCalder, Ryan S. D.; Dimanchev, Emil; Cohen, Stuart; McManamay, Ryan A. (IOP Publishing, 2024-09-02)The renewable energy transition is leading to increased electricity trade between the United States and Canada, with Canadian hydropower providing firm lower-carbon power and buffering variability of wind and solar generation in the U.S. However, long-term power purchase agreements and transborder transmission projects are controversial, with two of four proposed projects cancelled since 2018. Here, we argue that controversies are exacerbated by a lack of open-source data and tools to understand the economic, environmental, and health tradeoffs of new hydropower generation and transmission infrastructure in comparison to alternatives. This gap includes impacts that incremental transmission and generation projects have on the economics of the entire system, for example, how new transmission projects affect exports to existing markets or incentivize new generation. We identify priority areas for data synthesis and model development, such as integrating linked hydropower and hydrologic interactions in energy system models and openly releasing (by utilities) or back-calculating (by researchers) hydropower generation and operational parameters. Publicly available environmental (e.g., streamflow, precipitation) and techno-economic (e.g., costs, reservoir size,) data can be used to parameterize freely usable and extensible models. Existing models have been calibrated with operational data from Canadian utilities that are not publicly available, limiting the range of scientific and commercial questions these tools have been used to answer, and the range of parties that have been involved. Studies conducted using highly resolved, national scale public data exist in other countries, notably, United States, and demonstrate how greater transparency and extensibility can drive industry action. Improved data availability in Canada could facilitate approaches that (1) increase participation in decarbonization planning by a broader range of actors; (2) allow independent characterizations of environmental, health, and economic outcomes of interest to the public; and (3) identify decarbonization pathways consistent with community values.
- Drivers of Atlantic herring decline and evidence basis for fisheries closures and rebuilding plansCalder, Ryan S. D.; McDermid, Jenni L.; Boudreau, Stephanie A. (Canadian Science Publishing, 2023)Atlantic herring (Clupea harengus) are economically and ecologically significant but have been in decline in Atlantic Canada due to an uncertain combination of environmental recruitment controls, predation, and fishing (commercial fishery and poorly documented bait removals). Fisheries and Oceans Canada partially closed Atlantic mackerel (Scomber scombrus) and herring fisheries in March 2022 amid controversy and disagreement. Here, we develop a conceptual model for natural and anthropogenic controls on herring abundance centered on the southern Gulf of St. Lawrence (sGSL) and evaluate the likely importance of each. We provide the first estimates of the magnitude of bait fishery withdrawals in the sGSL. The decline in sGSL herring is likely driven by natural predation exacerbated by fishing. Bait fishery removals were 182 tonnes in 2021, suggesting that previous estimates for removals of spring-spawning herring were ∼30% too low. Fisheries closure is consistent with a precautionary approach given uncertainties and irreversibility of stock collapse. Ecosystemic models are needed but will be difficult to develop given the incomplete understanding of prey substitutability and net effect of interacting environmental processes.
- Forecasting ecosystem services to guide coastal wetland rehabilitation decisionsCalder, Ryan S. D.; Shi, Congjie; Mason, Sara A.; Olander, Lydia P.; Borsuk, Mark E. (Elsevier, 2019-10-01)Coastal wetlands provide diverse ecosystem services such as flood protection and recreational value. However, predicting changes in ecosystem service value fr0k from restoration or management is challenging because environmental systems are highly complex and uncertain. Furthermore, benefits are diverse and accrue over various timescales. We developed a generalizable mathematical coastal management model to compare restoration expenditures to ecosystem service benefits and apply it to McInnis Marsh, Marin County, California, USA. We find that benefits of restoration outweigh costs for a wide range of assumptions. For instance, costs of restoration range from 8–30% of the increase in ecosystem service value over 50 years depending on discount rate. Flood protection is the dominant monetized service for most payback periods and discount rates, but other services (e.g., recreation) dominate on shorter timescales (>50% of total value for payback periods ≤4 years). We find that the range of total ecosystem service value is narrower than overall variability reported in the literature, supporting the use of mechanistic methods in decision-making around coastal resiliency. However, the magnitude and relative importance of ecosystem services are sensitive to payback period, discount rate and risk tolerance, demonstrating the importance of probabilistic decision analysis. This work provides a modular, transferrable tool to that can also inform coastal resiliency investments elsewhere.
- Future Impacts of Hydroelectric Power Development on Methylmercury Exposures of Canadian Indigenous CommunitiesCalder, Ryan S. D.; Schartup, Amina T.; Li, Miling; Valberg, Amelia P.; Balcom, Prentiss H.; Sunderland, Elsie M. (American Chemical Society, 2016-12-06)Developing Canadian hydroelectric resources is a key component of North American plans for meeting future energy demands. Microbial production of the bioaccumulative neurotoxin methylmercury (MeHg) is stimulated in newly flooded soils by degradation of labile organic carbon and associated changes in geochemical conditions. We find all 22 Canadian hydroelectric facilities being considered for near-term development are located within 100 km of indigenous communities. For a facility in Labrador, Canada (Muskrat Falls) with planned completion in 2017, we probabilistically modeled peak MeHg enrichment relative to measured baseline conditions in the river to be impounded, downstream estuary, locally harvested fish, birds and seals, and three Inuit communities. Results show a projected 10-fold increase in riverine MeHg levels and a 2.6-fold increase in estuarine surface waters. MeHg concentrations in locally caught species increase 1.3 to 10-fold depending on time spent foraging in different environments. Mean Inuit MeHg exposure is forecasted to double following flooding and over half of the women of childbearing age and young children in the most northern community are projected to exceed the U.S. EPA's reference dose. Equal or greater aqueous MeHg concentrations relative to Muskrat Falls are forecasted for 11 sites across Canada, suggesting the need for mitigation measures prior to flooding.
- Geohealth Policy Benefits Are Mediated by Interacting Natural, Engineered, and Social ProcessesCalder, Ryan S. D.; Schartup, Amina T. (American Geophysical Union, 2023-08-29)Interest in health implications of Earth science research has significantly increased. Articles frequently dispense policy advice, for example, to reduce human contaminant exposures. Recommendations such as fish consumption advisories rarely reflect causal reasoning around tradeoffs or anticipate how scientific information will be received and processed by the media or vulnerable communities. Health is the product of interacting social and physical processes, yet predictable responses are often overlooked. Analysis of physical and social mechanisms, and health and non-health tradeoffs, is needed to achieve policy benefits rather than “policy impact.” Dedicated funding mechanisms would improve the quality and availability of these analyses.
- Graphical models and the challenge of evidence-based practice in development and sustainabilityCalder, Ryan S. D.; Alatorre, Andrea; Marx, Rebecca S.; Mallampalli, Varun; Mason, Sara A.; Olander, Lydia P.; Jeuland, Marc; Borsuk, Mark E. (Elsevier, 2020-08-01)Governments and social benefit organizations are expected to consider evidence in decision-making. In development and sustainability, evidence spans disciplines and methodological traditions and is often inconclusive. Graphical models are widely promoted to organize interdisciplinary evidence and improve decision-making by considering mediating variables. However, the reproducibility, objectivity and benefits for decision-making of graphical models have not been studied. We evaluate these considerations in the setting of energy services in the developing world, a contemporary development and sustainability imperative. We develop a database of relevant causal relations (313 concepts, 1337 relationships) asserted in the literature (561 peer-reviewed articles). We demonstrate that high-level relationships of interest to practitioners feature less consistent evidence than the causal relationships that underpin them, supporting increased use of problem decomposition through graphical modeling approaches. However, adding such detail increases complexity exponentially, introducing a hazard of overparameterization if evidence is not available to match the level of mechanistic detail.
- Increasing resiliency of integrated food-energy-water systems to viral pandemics: lessons from COVID-19Calder, Ryan S. D.; Grady, Caitlin; Jeuland, Marc; Kirchhoff, Christine J.; Rodgers, Samuel; Hale, Rebecca L.; Muenich, Rebecca L. (2021-12-15)COVID-19 disrupted labor and capital inputs to interdependent food, energy, and water (FEW) systems. We demonstrate how graphical modeling of phenomena realized during COVID-19 can reveal dynamics of FEW systems during viral pandemics. For example, physical distancing slowed COVID-19 spread but led to economic disruption and may have increased COVID-19 susceptibility by exacerbating FEW insecurities among individuals with many comorbidities. We review predictions of pandemic impacts on FEW systems and identify the mechanisms that explain divergences with respect to observed outcomes during the COVID-19 pandemic. For example, supply-side breakdowns were averted, likely due to low morbidity and mortality among working-age people and net declines in overall energy demand. Modern food systems promote viral emergence, and future pandemics are likely to differ from COVID-19 with respect to one or more key variables such as age-specific mortality or viral infectivity. We use the case study of the poultry supply chain to highlight challenges in understanding how future viral pandemics may jeopardize food security. For example, a lack of publicly available data on staffing levels, working conditions, and product throughputs limits the possibility to simulate supply chain breakdowns as a function of outbreaks in meatpacking plants. Workers provide labor inputs to the food system, while the food system exposes them to risks of illness and death; simultaneously, workers face economic pressures to work while sick and face demand-side FEW insecurities that affect viral susceptibility. Labor inputs to industrial food supply chains hinge on such system dynamics for which there is virtually no quantitative modeling capacity. COVID-19 however provides an opportunity to parameterize and evaluate new models for FEW resiliency. We propose near-term data collection priorities that span classic FEW research, such as characterization of materials throughputs, and include social science methods and perspectives, such as accounting for workers’ behavioral responses to competing health and economic pressures.