Browsing by Author "Cameron, Andrew D. S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- The Changing Face of Water: A Dynamic Reflection of Antibiotic Resistance Across LandscapesSanderson, Claire E.; Fox, J. Tyler; Dougherty, Eric R.; Cameron, Andrew D. S.; Alexander, Kathleen A. (Frontiers, 2018-09-06)Little is known about the role of surface water in the propagation of antibiotic resistance (AR), or the relationship between AR and water quality declines. While healthcare and agricultural sectors are considered the main contributors to AR dissemination, few studies have been conducted in their absence. Using linear models and Bayesian kriging, we evaluate AR among Escherichia coli water isolates collected bimonthly from the Chobe River in Northern Botswana (n = 1997, n = 414 water samples; July 2011–May 2012) in relation to water quality dynamics (E. coli, fecal coliform, and total suspended solids), land use, season, and AR in wildlife and humans within this system. No commercial agricultural or large medical facilities exist within this region. Here, we identify widespread AR in surface water, with land use and season significant predicators of AR levels. Mean AR was significantly higher in the wet season than the dry season (p = 0.003), and highest in the urban landscape (2.15, SD = 0.098) than the protected landscape (1.39, SD = 0.051). In-water E. coli concentrations were significantly positively associated with mean AR in the wet season (p < 0.001) but not in the dry season (p = 0.110), with TSS negatively associated with mean AR across seasons (p = 0.016 and p = 0.029), identifying temporal and spatial relationships between water quality variables and AR. Importantly, when human, water, and wildlife isolates were examined, similar AR profiles were identified (p < 0.001). Our results suggest that direct human inputs are sufficient for extensive dispersal of AR into the environment, with landscape features, season, and water quality variables influencing AR dynamics. Focused and expensive efforts to minimize pollution from agricultural sources, while important, may only provide incremental benefits to the management of AR across complex landscapes. Controlling direct human AR inputs into the environment remains a critical and pressing challenge.
- Globally Disseminated Multidrug Resistance Plasmids Revealed by Complete Assembly of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Genomes from Diarrheal Disease in BotswanaRahube, Teddie O.; Cameron, Andrew D. S.; Lerminiaux, Nicole A.; Bhat, Supriya V.; Alexander, Kathleen A. (MDPI, 2022-11-11)Antimicrobial resistance is a disseminated global health challenge because many of the genes that cause resistance can transfer horizontally between bacteria. Despite the central role of extrachromosomal DNA elements called plasmids in driving the spread of resistance, the detection and surveillance of plasmids remains a significant barrier in molecular epidemiology. We assessed two DNA sequencing platforms alone and in combination for laboratory diagnostics in Botswana by annotating antibiotic resistance genes and plasmids in extensively drug resistant bacteria from diarrhea in Botswana. Long-read Nanopore DNA sequencing and high accuracy basecalling effectively estimated the architecture and gene content of three plasmids in Escherichia coli HUM3355 and two plasmids in Klebsiella pneumoniae HUM7199. Polishing the assemblies with Illumina reads increased base calling precision with small improvements to gene prediction. All five plasmids encoded one or more antibiotic resistance genes, usually within gene islands containing multiple antibiotic and metal resistance genes, and four plasmids encoded genes associated with conjugative transfer. Two plasmids were almost identical to antibiotic resistance plasmids sequenced in Europe and North America from human infection and a pig farm. These One Health connections demonstrate how low-, middle-, and high-income countries collectively benefit from increased whole genome sequencing capacity for surveillance and tracking of infectious diseases and antibiotic resistance genes that can transfer between animal hosts and move across continents.
- Mycobacterium avium in Community and Household Water, Suburban Philadelphia, Pennsylvania, USA, 2010-2012Lande, Leah; Alexander, David C.; Wallace, Richard J. Jr.; Kwait, Rebecca; Iakhiaeva, Elena; Williams, Myra D.; Cameron, Andrew D. S.; Olshefsky, Stephen; Devon, Ronit; Vasireddy, Ravikiran; Peterson, Donald D.; Falkinham, Joseph O. III (2019-03)Attention to environmental sources of Mycobacterium avium complex (MAC) infection is a vital component of disease prevention and control. We investigated MAC colonization of household plumbing in suburban Philadelphia, Pennsylvania, USA. We used variable-number tandemrepeat genotyping and whole-genome sequencing with core genome single-nucleotide variant analysis to compare M. avium from household plumbing biofilms with M. avium isolates from patient respiratory specimens. M. avium was recovered from 30 (81.1%) of 37 households, including 19 (90.5%) of 21 M. avium patient households. For 11 (52.4%) of 21 patients with M. avium disease, isolates recovered from their respiratory and household samples were of the same genotype. Within the same community, 18 (85.7%) of 21 M. avium respiratory isolates genotypically matched household plumbing isolates. Six predominant genotypes were recovered across multiple households and respiratory specimens. M. avium colonizing municipal water and household plumbing may be a substantial source of MAC pulmonary infection.