Browsing by Author "Campelo, Sabrina N."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Burst sine wave electroporation (B-SWE) for expansive blood–brain barrier disruption and controlled non-thermal tissue ablation for neurological diseaseCampelo, Sabrina N.; Salameh, Zaid S.; Arroyo, Julio P.; May, James L.; Altreuter, Sara O.; Hinckley, Jonathan; Davalos, Rafael V.; Rossmeisl, John H. Jr. (AIP Publishing, 2024-05-30)The blood–brain barrier (BBB) limits the efficacy of treatments for malignant brain tumors, necessitating innovative approaches to breach the barrier. This study introduces burst sine wave electroporation (B-SWE) as a strategic modality for controlled BBB disruption without extensive tissue ablation and compares it against conventional pulsed square wave electroporation-based technologies such as high-frequency irreversible electroporation (H-FIRE). Using an in vivo rodent model, B-SWE and H-FIRE effects on BBB disruption, tissue ablation, and neuromuscular contractions are compared. Equivalent waveforms were designed for direct comparison between the two pulsing schemes, revealing that B-SWE induces larger BBB disruption volumes while minimizing tissue ablation. While B-SWE exhibited heightened neuromuscular contractions when compared to equivalent H-FIRE waveforms, an additional low-dose B-SWE group demonstrated that a reduced potential can achieve similar levels of BBB disruption while minimizing neuromuscular contractions. Repair kinetics indicated faster closure post B-SWE-induced BBB disruption when compared to equivalent H-FIRE protocols, emphasizing B-SWE’s transient and controllable nature. Additionally, finite element modeling illustrated the potential for extensive BBB disruption while reducing ablation using B-SWE. B-SWE presents a promising avenue for tailored BBB disruption with minimal tissue ablation, offering a nuanced approach for glioblastoma treatment and beyond.
- High-Frequency Irreversible Electroporation (H-FIRE) Induced Blood-Brain Barrier Disruption Is Mediated by Cytoskeletal Remodeling and Changes in Tight Junction Protein RegulationPartridge, Brittanie R.; Kani, Yukitaka; Lorenzo, Melvin F.; Campelo, Sabrina N.; Allen, Irving C.; Hinckley, Jonathan; Hsu, Fang-Chi; Verbridge, Scott S.; Robertson, John L.; Davalos, Rafael V.; Rossmeisl, John H. Jr. (MDPI, 2022-06-11)Glioblastoma is the deadliest malignant brain tumor. Its location behind the blood–brain barrier (BBB) presents a therapeutic challenge by preventing effective delivery of most chemotherapeutics. H-FIRE is a novel tumor ablation method that transiently disrupts the BBB through currently unknown mechanisms. We hypothesized that H-FIRE mediated BBB disruption (BBBD) occurs via cytoskeletal remodeling and alterations in tight junction (TJ) protein regulation. Intracranial H-FIRE was delivered to Fischer rats prior to sacrifice at 1-, 24-, 48-, 72-, and 96 h post-treatment. Cytoskeletal proteins and native and ubiquitinated TJ proteins (TJP) were evaluated using immunoprecipitation, Western blotting, and gene-expression arrays on treated and sham control brain lysates. Cytoskeletal and TJ protein expression were further evaluated with immunofluorescent microscopy. A decrease in the F/G-actin ratio, decreased TJP concentrations, and increased ubiquitination of TJP were observed 1–48 h post-H-FIRE compared to sham controls. By 72–96 h, cytoskeletal and TJP expression recovered to pretreatment levels, temporally corresponding with increased claudin-5 and zonula occludens-1 gene expression. Ingenuity pathway analysis revealed significant dysregulation of claudin genes, centered around claudin-6 in H-FIRE treated rats. In conclusion, H-FIRE is capable of permeating the BBB in a spatiotemporal manner via cytoskeletal-mediated TJP modulation. This minimally invasive technology presents with applications for localized and long-lived enhanced intracranial drug delivery.
- An Investigation for Large Volume, Focal Blood-Brain Barrier Disruption with High-Frequency Pulsed Electric FieldsLorenzo, Melvin F.; Campelo, Sabrina N.; Arroyo, Julio P.; Aycock, Kenneth N.; Hinckley, Jonathan; Arena, Christopher B.; Rossmeisl, John H. Jr.; Davalos, Rafael V. (MDPI, 2021-12-20)The treatment of CNS disorders suffers from the inability to deliver large therapeutic agents to the brain parenchyma due to protection from the blood-brain barrier (BBB). Herein, we investigated high-frequency pulsed electric field (HF-PEF) therapy of various pulse widths and interphase delays for BBB disruption while selectively minimizing cell ablation. Eighteen male Fisher rats underwent craniectomy procedures and two blunt-tipped electrodes were advanced into the brain for pulsing. BBB disruption was verified with contrast T1W MRI and pathologically with Evans blue dye. High-frequency irreversible electroporation cell death of healthy rodent astrocytes was investigated in vitro using a collagen hydrogel tissue mimic. Numerical analysis was conducted to determine the electric fields in which BBB disruption and cell ablation occur. Differences between the BBB disruption and ablation thresholds for each waveform are as follows: 2-2-2 μs (1028 V/cm), 5-2-5 μs (721 V/cm), 10-1-10 μs (547 V/cm), 2-5-2 μs (1043 V/cm), and 5-5-5 μs (751 V/cm). These data suggest that HF-PEFs can be fine-tuned to modulate the extent of cell death while maximizing peri-ablative BBB disruption. Furthermore, numerical modeling elucidated the diffuse field gradients of a single-needle grounding pad configuration to favor large-volume BBB disruption, while the monopolar probe configuration is more amenable to ablation and reversible electroporation effects.
- Investigation of High Frequency Irreversible Electroporation for Canine Spontaneous Primary Lung Tumor AblationHay, Alayna N.; Aycock, Kenneth N.; Lorenzo, Melvin F.; David, Kailee; Coutermarsh-Ott, Sheryl; Salameh, Zaid; Campelo, Sabrina N.; Arroyo, Julio P.; Ciepluch, Brittany; Daniel, Gregory; Davalos, Rafael V.; Tuohy, Joanne (MDPI, 2024-09-07)In this study, the feasibility of treating canine primary lung tumors with high-frequency irreversible electroporation (H-FIRE) was investigated as a novel lung cancer treatment option. H-FIRE is a minimally invasive tissue ablation modality that delivers bipolar pulsed electric fields to targeted cells, generating nanopores in cell membranes and rendering targeted cells nonviable. In the current study, canine patients (n = 5) with primary lung tumors underwent H-FIRE treatment with an applied voltage of 2250 V using a 2-5-2 µs H-FIRE waveform to achieve partial tumor ablation prior to the surgical resection of the primary tumor. Surgically resected tumor samples were evaluated histologically for tumor ablation, and with immunohistochemical (IHC) staining to identify cell death (activated caspase-3) and macrophages (IBA-1, CD206, and iNOS). Changes in immunity and inflammatory gene signatures were also evaluated in tumor samples. H-FIRE ablation was evident by the microscopic observation of discrete foci of acute hemorrhage and necrosis, and in a subset of tumors (n = 2), we observed a greater intensity of cleaved caspase-3 staining in tumor cells within treated tumor regions compared to adjacent untreated tumor tissue. At the study evaluation timepoint of 2 h post H-FIRE, we observed differential gene expression changes in the genes IDO1, IL6, TNF, CD209, and FOXP3 in treated tumor regions relative to paired untreated tumor regions. Additionally, we preliminarily evaluated the technical feasibility of delivering H-FIRE percutaneously under CT guidance to canine lung tumor patients (n = 2). Overall, H-FIRE treatment was well tolerated with no adverse clinical events, and our results suggest H-FIRE potentially altered the tumor immune microenvironment.
- Real-Time Temperature Rise Estimation during Irreversible Electroporation Treatment through State-Space ModelingCampelo, Sabrina N.; Jacobs, Edward J.; Aycock, Kenneth N.; Davalos, Rafael V. (MDPI, 2022-09-23)To evaluate the feasibility of real-time temperature monitoring during an electroporation-based therapy procedure, a data-driven state-space model was developed. Agar phantoms mimicking low conductivity (LC) and high conductivity (HC) tissues were tested under the influences of high (HV) and low (LV) applied voltages. Real-time changes in impedance, measured by Fourier Analysis SpecTroscopy (FAST) along with the known tissue conductivity and applied voltages, were used to train the model. A theoretical finite element model was used for external validation of the model, producing model fits of 95.8, 88.4, 90.7, and 93.7% at 4 mm and 93.2, 58.9, 90.0, and 90.1% at 10 mm for the HV-HC, LV-LC, HV-LC, and LV-HC groups, respectively. The proposed model suggests that real-time temperature monitoring may be achieved with good accuracy through the use of real-time impedance monitoring.