Browsing by Author "Carlson, Grace"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Groundwater Volume Loss in Mexico City Constrained by InSAR and GRACE Observations and Mechanical ModelsKhorrami, Mohammad; Shirzaei, Manoochehr; Ghobadi-Far, Khosro; Werth, Susanna; Carlson, Grace; Zhai, Guang (American Geophysical Union, 2023-03)Groundwater withdrawal can cause localized and rapid poroelastic subsidence, spatially broad elastic uplift of low amplitude, and changes in the gravity field. Constraining groundwater loss in Mexico City, we analyze data from the Gravity Recovery and Climate Experiment and its follow-on mission (GRACE/FO) and Synthetic Aperture Radar (SAR) Sentinel-1A/B images between 2014 and 2021. GRACE/FO observations yield a groundwater loss of 0.85-3.87 km(3)/yr for a region of similar to 300 x 600 km surrounding Mexico City. Using the high-resolution interferometric SAR data set, we measure >35 cm/yr subsidence within the city and up to 2 cm/yr of uplift in nearby areas. Attributing the long-term subsidence to poroelastic aquifer compaction and the long-term uplift to elastic unloading, we apply respective models informed by local geology, yielding groundwater loss of 0.86-12.57 km(3)/yr. Our results suggest Mexico City aquifers have been depleting at faster rates since 2015, exacerbating the socioeconomic and health impacts of long-term groundwater overdrafts.
- Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in CaliforniaCarlson, Grace; Werth, Susanna; Shirzaei, Manoochehr (American Geophysical Union, 2022-03)Global Navigation Satellite System (GNSS) vertical displacements measuring the elastic response of Earth's crust to changes in hydrologic mass have been used to produce terrestrial water storage change ( increment TWS) estimates for studying both annual increment TWS as well as multi-year trends. However, these estimates require a high observation station density and minimal contamination by nonhydrologic deformation sources. The Gravity Recovery and Climate Experiment (GRACE) is another satellite-based measurement system that can be used to measure regional TWS fluctuations. The satellites provide highly accurate increment TWS estimates with global coverage but have a low spatial resolution of similar to 400 km. Here, we put forward the mathematical framework for a joint inversion of GNSS vertical displacement time series with GRACE increment TWS to produce more accurate spatiotemporal maps of increment TWS, accounting for the observation errors, data gaps, and nonhydrologic signals. We aim to utilize the regional sensitivity to increment TWS provided by GRACE mascon solutions with higher spatial resolution provided by GNSS observations. Our approach utilizes a continuous wavelet transform to decompose signals into their building blocks and separately invert for long-term and short-term mass variations. This allows us to preserve trends, annual, interannual, and multi-year changes in TWS that were previously challenging to capture by satellite-based measurement systems or hydrological models, alone. We focus our study in California, USA, which has a dense GNSS network and where recurrent, intense droughts put pressure on freshwater supplies. We highlight the advantages of our joint inversion results for a tectonically active study region by comparing them against inversion results that use only GNSS vertical deformation as well as with maps of increment TWS from hydrological models and other GRACE solutions. We find that our joint inversion framework results in a solution that is regionally consistent with the GRACE increment TWS solutions at different temporal scales but has an increased spatial resolution that allows us to differentiate between regions of high and low mass change better than using GRACE alone.
- Persistent impact of spring floods on crop loss in U.S. MidwestShirzaei, Manoochehr; Koshmanesh, Mostafa; Ojha, Chandrakanta; Werth, Susanna; Kerner, Hannah; Carlson, Grace; Sherpa, Sonam Futi; Zhai, Guang; Lee, Jui-Chi (Elsevier, 2021-10-20)Climate extremes threaten global food security, and compound events, such as late spring heavy and warmer rainfall over snow and subsequent flooding, exacerbate this vulnerability. Despite frequent occurrences in recent years, a quantitative understanding of the compound weather events' impacts remains elusive. Here, we use Synthetic Aperture Radar data from Sentinel-1 and normalized difference vegetation index data from MODIS satellites to map the spring 2019 U.S. Midwest flood extent and evaluate its impact on crop loss. We find a statistically significant association between flooded counties and those with plant greenup delay, while the correlation between flood area percent and amount of green-up delay remains weak, albeit reliable. An analysis of the stream gage time series and crop loss records shows that during the past ∼70 years, ∼43% of spring large discharges are associated with widespread crop loss. We also find an increase in streams' discharge frequency and magnitude across the Midwest, indicating the possibility of a future increase in crop loss due to spring flooding. This study highlights the importance of Earth-observing satellite data for developing climate adaptation and resilience plans.
- Subsidence-Derived Volumetric Strain Models for Mapping Extensional Fissures and Constraining Rock Mechanical Properties in the San Joaquin Valley, CaliforniaCarlson, Grace; Shirzaei, Manoochehr; Ojha, Chandrakanta; Werth, Susanna (2020-09)Large-scale subsidence due to aquifer-overdraft is an ongoing hazard in the San Joaquin Valley. Subsidence continues to cause damage to infrastructure and increases the risk of extensional fissures.Here, we use InSAR-derived vertical land motion (VLM) to model the volumetric strain rate due to groundwater storage change during the 2007-2010 drought in the San Joaquin Valley, Central Valley, California. We then use this volumetric strain rate model to calculate surface tensile stress in order to predict regions that are at the highest risk for hazardous tensile surface fissures. We find a maximum volumetric strain rate of -232 microstrain/yr at a depth of 0 to 200 m in Tulare and Kings County, California. The highest risk of tensile fissure development occurs at the periphery of the largest subsiding zones, particularly in Tulare County and Merced County. Finally, we assume that subsidence is likely due to aquifer pressure change, which is calculated using groundwater level changes observed at 300 wells during this drought. We combine pressure data from selected wells with our volumetric strain maps to estimate the quasi-static bulk modulus, K, a poroelastic parameter applicable when pressure change within the aquifer is inducing volumetric strain. This parameter is reflective of a slow deformation process and is one to two orders of magnitude lower than typical values for the bulk modulus found using seismic velocity data. The results of this study highlight the importance of large-scale, high-resolution VLM measurements in evaluating aquifer system dynamics, hazards associated with overdraft, and in estimating important poroelastic parameters.