Browsing by Author "Carter, David R."
Now showing 1 - 14 of 14
Results Per Page
Sort Options
- Assessing Methods to Measure Stem Diameter at Breast Height with High Pulse Density Helicopter Laser ScanningSumnall, Matthew J.; Raigosa-Garcia, Ivan; Carter, David R.; Albaugh, Timothy J.; Campoe, Otávio C.; Rubilar, Rafael A.; Alexander, Bart; Cohrs, Christopher W.; Cook, Rachel L. (MDPI, 2025-01-10)Technological developments have allowed helicopter airborne laser scanning (HALS) to produce high-density point clouds below the forest canopy. We present a tree stem classification method that combines linear shape detection and model-based clustering, using four discrete methods to estimate stem diameter. Stem horizontal size was estimated every 25 cm below the living crown, and a cubic spline was used to estimate where there were gaps. Individual stem diameter at breast height (DBH) was estimated for 77% of field-measured trees. The root mean square error (RMSE) of DBH estimates was 7–12 cm using stem circle fitting. Adapting the approach to use an existing stem taper model reduced the RMSE of estimates (<1 cm). In contrast, estimates that were produced from a previously existing DBH estimation method (PREV) could be achieved for 100% of stems (DBH RMSE 6 cm), but only after location-specific error was corrected. The stem classification method required comparatively little development of statistical models to provide estimates, which ultimately had a similar level of accuracy (RMSE < 1 cm) to PREV. HALS datasets can measure broad-scale forest plantations and reduce field efforts and should be considered an important tool for aiding in inventory creation and decision-making within forest management.
- Assessing patterns of oak regeneration and C storage in relation to restoration-focused management, historical land use, and potential trade-offsCarter, David R.; Fahey, Robert T.; Dreisilker, Kurt; Bialecki, Margaret B.; Bowles, Marlin (2015-01-29)Restoration of composition, structure, and function in oak dominated ecosystems is the focus of management in temperate forests around the world. Land managers focused on oak ecosystem restoration are challenged by the legacy effects of complex land-use histories, urbanization, climate change, and potential stakeholder response to management. Trade-offs may exist between managing forests for climate mitigation (e.g., maximizing C storage or sequestration) and promoting shade-intolerant species historically associated with frequent or high-severity disturbances. This study assessed the potentially conflicting goals of sustained live biomass accrual and increased oak regeneration in the East Woods Natural Area at The Morton Arboretum in Lisle, IL, USA. We evaluated how biomass trends and oak regeneration were related to management regimes, land-use history, current stand structure and composition, and topoedaphic factors. Our results indicated no significant trade-off between sustained live biomass accrual and oak regeneration. Live biomass was increasing across the landscape (biomass increment averaged 18,186 kg ha-1 yr-1) and was not strongly related to differences in management or land-use history. Oak regeneration was rare, especially beyond the seedling stage (~226 seedlings and 9 saplings ha-11) and was also not strongly related to recent management. Our results indicate that even 20+ years of annual prescribed burning combined with understory thinning has failed to produce the open canopy conditions and high light availability that are necessary for successful oak recruitment. The absence of any trade-offs between biomass accrual and oak regeneration may, therefore, be largely related to the ineffectiveness of current management for promoting oak regeneration. More intensive management utilizing canopy manipulations could produce greater trade-offs, but is likely necessary to establish and release oak regeneration.
- Assessing the utility of NAIP digital aerial photogrammetric point clouds for estimating canopy height of managed loblolly pine plantations in the southeastern United StatesRitz, Alison L.; Thomas, Valerie A.; Wynne, Randolph H.; Green, P. Corey; Schroeder, Todd A.; Albaugh, Timothy J.; Burkhart, Harold E.; Carter, David R.; Cook, Rachel L.; Campoe, Otavio C.; Rubilar, Rafael A.; Rakestraw, Jim (Elsevier, 2022-09)Remote sensing offers many advantages to supplement traditional, ground-based forest measurements, such as limiting time in the field and fast spatial coverage. Data from airborne laser scanning (lidar) have provided accurate estimates of forest height, where, and when available. However, lidar is expensive to collect, and wall-to-wall coverage in the United States is lacking. Recent studies have investigated whether point clouds derived from digital aerial photogrammetry (DAP) can supplement lidar data for estimating forest height due to DAP's lower costs and more frequent acquisitions. We estimated forest heights using point clouds derived from the National Agricultural Imagery Program (NAIP) DAP program in the United States to create a predicted height map for managed loblolly pine stands. For 534 plots in Virginia and North Carolina, with stand age ranging from 1 year to 42 years old, field-collected canopy heights were regressed against the 90th percentile of heights derived from NAIP point clouds. Model performance was good, with an R2 of 0.93 and an RMSE of 1.44 m. However, heights in recent heavily thinned stands were consistently underestimated, likely due to between-row shadowing leading to a poor photogrammetric solution. The model was applied to non-thinned evergreen areas in Virginia, North Carolina, and Tennessee to produce a multi-state 5 m x 5 m canopy height map. NAIP-derived point clouds are a viable means of predicting canopy height in southern pine stands that have not been thinned recently.
- Comparative effects of soil resource availability on physiology and growth of Scotch broom (Cytisus scoparius) and Douglas-fir (Pseudotsuga menziesii) seedlingsCarter, David R.; Slesak, Robert A.; Harrington, Timothy B.; D'Amato, Anthony W. (2019-12-01)Scotch broom (Cytisus scoparius (L.) Link) is an invasive, N-fixing shrub in recently harvested Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) forests in the Pacific Northwest. The ability of Scotch broom to dominate a site and displace Douglas-fir in this region may be mediated by site quality and site resource supply. Individual seedlings of Scotch broom (n = 46) and Douglas-fir (n = 46) were planted in a controlled nursery setting and monitored over two years to test the effects of irrigation and fertilization treatments on the physiology and growth of these oft-conflicting species. Overall, Scotch broom remained largely unaffected by resource availability relative to Douglas-fir, which was more sensitive to water and nutrient availability. Scotch broom consistently showed greater assimilation and transpiration rates and plant water potentials than Douglas-fir under all treatments - indicating an elevated ability to acquire soil water resources. The conservative ecology of Douglas-fir resulted in greater water-use efficiency than Scotch broom throughout the experiment, however. Similarly, Douglas-fir crown and height growth started later in the growing season and ended earlier than that of Scotch broom, indicating a longer growing season for Scotch broom but also the importance of resource availability early in the growing season for Douglas-fir given its determinate growth. While Douglas-fir growth reflected the additive effects of increased resource availability, it did not surpass the growth of Scotch broom, which maintained steady growth and biomass accrual under all treatment conditions. The height of Douglas-fir growing under optimized conditions was approximately 40 cm less than that of Scotch broom regardless of treatment regime by the end of the two-year study. This demonstrates how critical early intervention is for land managers in order to control this invasive to avoid Scotch broom overtopping Douglas-fir seedlings during stand establishment.
- Complementarity increases production in genetic mixture of loblolly pine (Pinus taeda L.) throughout planted rangeCarter, David R.; Albaugh, Timothy J.; Camo, Otávio C.; Grossman, Jake J.; Rubilar, Rafael A.; Sumnall, Matthew; Maier, Christopher A.; Cook, Rachel L.; Fox, Thomas R. (ESA, 2020-09-01)Increased genotypic diversity has been associated with increased biomass production in shortrotation tree species. Increasing the genotypic diversity of loblolly pine (Pinus taeda L.) in an attempt to increase productivity has not been extensively studied nor tested operationally or over long durations (i.e., >7 yr). We used genetically mixed and pure rows of loblolly pine growing throughout its planted range— Virginia, North Carolina, and Brazil—to test the effects of genetic mixing on volume production. There were no significant effects of mixing rows compared to pure rows on uniformity or mortality. Under intensive silviculture, individual trees planted in mixed rows had approximately 7% greater volume than those in the pure rows (estimate = 0.015 m³/tree ± 0.006) in the final year of measurement—year 8 for Brazil and year 10 for North Carolina and Virginia. Scaling the increase in individual stem volume under mixed rows and intensive silviculture to 1235 stems ha⁻¹ would equate to an additional 1.85 m³∙ha⁻¹∙yr⁻¹ in mean annual increment. Measuring the net biodiversity effect, our data suggest the positive growth response is driven by complementarity and not selection, meaning both genetic entries tend to grow larger when grown together. Additional trials are necessary to test the effects of mixing rows across large plots and to assess whether this increase is sustained throughout the rotation. If this increasing trend were to hold for intensively managed plantations, strategically mixing rows to increase productivity could be a valuable addition to an intensively managed plantation requiring relatively little added operational consideration to implement.
- Crown architecture, crown leaf area distribution, and individual tree growth efficiency vary across site, genetic entry, and planting densityAlbaugh, Timothy J.; Maier, Christopher A.; Campoe, Otavio C.; Yanez, Marco A.; Carbaugh, Eric D.; Carter, David R.; Cook, Rachel L.; Rubilar, Rafael A.; Fox, Thomas R. (2020-02)We examined crown architecture and within crown leaf area distribution effects on Pinus taeda L. growth in North Carolina (NC), Virginia (VA), and Brazil (BR) to better understand why P. taeda can grow much better in Brazil than in the southeastern United States. The NC, VA, and BR sites were planted in 2009, 2009, and 2011, respectively. At all sites, we planted the same two genetic entries at 618, 1236, and 1854 trees ha(-1). In 2013, when trees were still open grown, the VA and NC sites had greater branch diameter (24%), branch number (14%), live crown length (44%), foliage mass (82%), and branch mass (91%), than the BR site. However, in 2017, after crown closure and when there was no significant difference in tree size, site did not significantly affect these crown variables. In 2013, site significantly affected absolute leaf area distribution, likely due to differences in live crown length and leaf area, such that there was more foliage at a given level in the crown at the VA and NC sites than at the BR site. In 2017, site was still a significant factor explaining leaf area distribution, although at this point, with crown closure and similar sized trees, there was more foliage at the BR site at a given level in the crown compared to the VA and NC sites. In 2013 and 2017, when including site, genetic entry, stand density, and leaf area distribution parameters as independent variables, site significantly affected individual tree growth efficiency, indicating that something other than leaf area distribution was influencing the site effect. Better BR P. taeda growth is likely due to a combination of factors, including leaf area distribution, crown architecture, and other factors that have been identified as influencing the site effect (heat sum), indicating that future work should include a modeling analysis to examine all known contributing factors.
- Effects of establishment fertilization on Landsat-assessed leaf area development of loblolly pine standsHouse, Matthew N.; Wynne, Randolph H.; Thomas, Valerie A.; Cook, Rachel L.; Carter, David R.; Van Mullekom, Jennifer H.; Rakestraw, Jim; Schroeder, Todd A. (Elsevier, 2024-03-15)Loblolly pine (Pinus taeda L.) plantations in the southeastern United States are among the world's most intensively managed forest plantations. Under intensive management, a common practice is fertilizing at establishment. The objective of this study was to investigate the effect of establishment fertilization on leaf area development of loblolly pine plantation stands (n = 3997) over 16 years compared to stands that did not receive nutrient additions at planting. Leaf area index (LAI) is a meaningful biophysical indicator of vigor and an important functional and structural element of a planted stand. The study area was stratified by plant hardiness zone to account for climatic differences and soil type (texture and drainage class), using the Cooperative Research in Forest Fertilization (CRIFF) groupings. LAI was estimated from Landsat imagery to create trajectories of mean stand LAI over 16 years. Establishment fertilization, on average, (1) increased stand LAI beginning at year two, with a peak at years six and seven, and (2) decreased the time required for a stand to reach a winter LAI of 1.5 by almost two years. Fertilization responses varied by climate zone and soil drainage class, where the warmest zones benefited the most, particularly in poorly drained soils. Past year 10, the differences in LAI between fertilized and unfertilized stands were not practically important. Using Landsat data in a cloud-computing environment, we demonstrated the benefits of establishment fertilization to stand LAI development using a large sample over the native range of loblolly pine.
- Impacts of oak-focused silvicultural treatments on the regeneration layer nine years post-treatment in the southern Appalachian Mountains of North CarolinaBeasley, Christen Marie (Virginia Tech, 2021-01-08)Oaks (Quercus spp.) are an important part of the forested landscape in the eastern United States. Although oak is increasing in standing volume, an oak regeneration bottleneck has occurred throughout its range in recent decades. Subsequently, as oak overstory is being harvested, rarely is oak recruited into the overstory to maintain the historic dominance of overstory oak. In the absence of fire and subsequent canopy closure, mesic species have proliferated, frequently forming a dense understory, inhibiting oak regeneration success. This study was developed to determine species dynamics between oak and oak competitors in response to silvicultural treatments in the southern Appalachian Mountains of North Carolina. The treatments were: a shelterwood treatment (25-30% basal area reduction through mid-story removal with herbicides), a prescribed fire treatment (two late dormant season fires occurred over a 9-year period), a shelterwood and burn treatment (prescribed fire 3-5 years following 30-40% basal area removal), and an unmanaged control. To determine treatment impacts on the regeneration layer, importance value and stems ha-1 were calculated at the species group and individual species level 0- and 9- years post initial treatment. A principal component analysis and an analysis of basal area by treatment 0- and 9-years post-treatment were used to determine the influence of site-specific characteristics on regeneration layer response. The greatest relative increases in importance values were 1401% and 2995% for the red oak group and yellow-poplar (Liriodendron tulipifera), respectively, in the shelterwood and burn (SWB). Change in all species groups were predominantly influenced by the smallest size-class (<0.6 m tall), with the exception of northern red oak (Q. rubra) and yellow-poplar in the SWB. The SWB significantly reduced importance values of all shade tolerant species groups and was the only treatment to decrease red maple (Acer rubrum) importance value and density over the study years. The prescribed fire (RXF) treatment increased red oak group importance value, while simultaneously decreasing yellow-poplar importance value and increasing red maple importance value. Changes in the red oak group in the SWB and the RXF were driven by northern red oak and scarlet oak (Q. coccinea), respectively. Treatments do not appear to change the competitive status of the white oak group. Elevation was closely associated with the red oak group. Yellow-poplar importance value increases, white oak group importance value increases, and site index were closely associated. Decreases in basal area were greatest in the SWB, and the SWB was the only treatment to significantly decrease overstory basal area. The RXF and SWB treatments improved the competitive status of only some oak species, but modifications to these treatments may result in better control of yellow-poplar and red maple competition, further improving oak's competitive status. Site specific factors such as elevation and site index may have impacted the regeneration layer response to treatments.
- Legacy effects of non-native Cytisus scoparius in glacial outwash soils: Potential impacts to forest soil productivity in western WashingtonSlesak, Robert A.; Harrington, Timothy B.; D'Amato, Anthony W.; Carter, David R. (2021-02-01)Scotch broom (Cytisus scoparius (L.) Link) is a highly competitive, nonnative, leguminous shrub species of major concern in coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) forests of the Pacific Northwest that has potential to impact long-term soil productivity. We conducted a bioassay to assess the potential for legacy effects on soils (e.g., soil nutrient effects, soil seedbank, etc.) following Scotch broom removal and the potential for recovery over time. The bioassay was conducted using glacial-outwash soils from an existing Long-Term Soil Productivity study near Matlock, WA, USA, where Scotch broom had been removed or kept out for 0 (broom present), 4, 10, or 14 years. Soils from each broom removal duration were combined with fertilizer treatments to assess mechanisms of response of three native plant species: yarrow (Achillea millefolium L.), Roemer's fescue (Festuca idahoensis Elmer ssp. Roemeri), and coast Douglas-fir. There was evidence for negative soil legacy effects on Douglas-fir growth and biomass, which decreased with time since broom removal. Responses to the fertilizer treatments indicated the effect was not associated with reduced nutrient availability. In contrast, both yarrow and Roemer's fescue had significantly greater biomass in soil from where broom was recently present, which decreased with time since broom removal. Responses to the fertilizer treatments indicated that this positive legacy effect is associated with nutrient availability, likely increased N. Soils from 0 and 4 years since broom removal were estimated as having the potential to produce over 578,500 Scotch broom germinants ha(-1) . Our results demonstrate the potential for both negative and positive soil legacy effects of broom depending on the responding plant species. Combined effects of negative soil legacies and a large and viable seed bank from Scotch broom create growing conditions likely to hinder long-term productivity of Douglas-fir.
- Loblolly Pine Growth and Competition Response to Varied Chemical Site Preparation Treatments 14 Years After Establishment in the Piedmont of VirginiaByers, Alexander M. (Virginia Tech, 2021-06-16)Chemical site preparation is used to enhance the productivity of loblolly pine plantations; however, it is most often combined with other methods and/or chemical release, and has been studied little on its own. Our study, conducted in the Virginia piedmont, compares the effects of various site preparation applications of imazapyr and their timings (July 23rd, September 3rd, and October 1st 2005) against a year-two chemical release (September 12th 2007), and an untreated check, all following a site preparation burn (June 15, 2005). Testing for additive effects, site preparation treatments were conducted with and without, sulfometuron methyl (SMAX) which targets herbaceous vegetation. Half of all treatments, including the check and release, received a year-one weed control treatment (H) of imazapyr and SMAX. Pines were measured every few years, including the latest measurement in year 14 (2019). Competing hardwood vegetation basal area was measured in year 14. All site preparation treatments reduced competition levels compared to the check, and an inverse relationship exists between competition level and pine volume. Adding SMAX resulted in less effective competition control, but had little effect on pine volumes. Adding H decreased average competition levels, and increased pine volumes. H treatments had the most effect at improving early season (July) applications. September and October treatments generally had more effect than July and the year-two release at controlling competing vegetation, and also showed higher individual pine tree volumes than all other treatments. Chemical site preparation treatments, even performed alone, appear to be valid means of improving pine stands.
- Scotch broom (Cytisus scoparius) modifies microenvironment to promote nonnative plant communitiesCarter, David R.; Slesak, Robert A.; Harrington, Timothy B.; Peter, David H.; D'Amato, Anthony W. (2018-11-24)Scotch broom [Cytisus scoparius (L.) Link] is a globally important nitrogen (N)-fixing invasive plant species that has potential to alter soil water dynamics, soil chemistry, and plant communities. We evaluated the effects of Scotch broom on soil moisture, soil chemistry, soil temperature, photosynthetically active radiation (PAR), and vegetation communities over 4years at a site recently harvested for timber. Treatments of Scotch broom (either present via planting or absent) and background vegetation (either present or absent via herbicide treatments) were applied to 4m(2) plots. Background vegetation was associated with the greatest decrease of soil water content (SWC) among treatments. During the driest year, Scotch broom showed some evidence of increased early-and late-season soil water usage, and, briefly, a high usage relative to background vegetation plots. On a percent cover basis, Scotch broom had a substantially greater negative influence on SWC than did background vegetation. Surprisingly, Scotch broom was not consistently associated with increases in total soil N, but there was evidence of increasing soil water N when Scotch broom was present. Scotch broom-only plots had greater concentrations of soil water magnesium (Mg2+) and calcium (Ca2+) than other treatments. On a percent cover basis, Scotch broom had a uniquely high demand for potassium (K+) relative to the background vegetation. Average soil temperature was slightly greater, and soil surface PAR lower, with Scotch broom present. Scotch broom-absent plots increased in species diversity and richness over time, while Scotch broom-present plots remained unchanged. Scotch broom presence was associated with an increase in cover of nonnative sweet vernalgrass (Anthoxanthum odoratum L.). Scotch broom generated positive feedbacks with resource conditions that favored its dominance and the establishment of nonnative grass.
- Soil texture and other site-level factors differentially affect growth of Scotch broom (Cytisus scoparius) and Douglas-fir (Pseudotsuga menziesii) seedlings in the western Pacific NorthwestCarter, David R.; Slesak, Robert A.; Harrington, Timothy B.; D'Amato, Anthony W. (Canadian Science Publishing, 2022-01)The invasive shrub Scotch broom (Cytisus scoparius (L.) Link) is a pervasive threat to regenerating Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) stands in the Pacific Northwest, USA. Field observations indicate that the susceptibility of areas to Scotch broom invasion and dominance can vary by site. We selected 10 sites throughout the western Pacific Northwest that spanned a gradient of soil textures and other factors to test the site-specific susceptibility of Douglas-fir to overtopping by Scotch broom. We expected to find that the ability of Scotch broom to dominate a site was mediated by site-level factors, particularly those influencing soil water - the most limiting factor to growth in the region. We found Scotch broom and Douglas-fir were inversely affected by site-level factors. In general, Douglas-fir absolute height growth rates were more competitive with those of Scotch broom on fine-textured soils than on more coarsely textured soils. We also found Douglas-fir to have a more dramatic response to increasing down woody material than Scotch broom. Scotch broom height growth approached an asymptote at 3 m. Sites with fast-growing Douglas-fir were able to surpass this height 6-7 years after planting and appear likely to avoid suppression by Scotch broom.
- Tree growth and resilience to extreme drought across an urban land-use gradientCarter, David R.; Fahey, Robert T.; Bialecki, Margaret B. (2013-11-01)Understanding the response of urban forests to extreme climatic events, such as drought, will be essential to predicting impacts of climate change on the urban tree canopy and related ecosystem services. This study evaluated variation in tree growth and drought resistance (growth during drought) and resilience (growth in period following drought) across four land-use categories (built, transportation, park, and semi-natural forest) and four species (Acer saccharum, Gymnocladus dioicus, Liriodendron tulipifera, and Pinus strobus) at The Morton Arboretum in suburban Lisle, Illinois, U.S. Tree growth and resistance to drought both varied as an interaction between land-use and species (F15, 100 = 5.25, p < 0.001; F15, 100 = 2.42, p = 0.005). Resilience of tree growth to extreme drought was generally high and did not vary across species and land-uses. In this study, individual tree species responses to drought varied across land-uses, illustrating the difficulty of predicting the reaction of urban forests to projected increases in the frequency of extreme climatic events. Tree growth response to drought varied even across the relatively narrow range of growing conditions studied here. Investigation of a broader range of sites, encompassing the full urban forest continuum, would likely demonstrate even greater variation in tree response to extreme climatic events.
- The Use of Videos for a Final Project: A Case Study in Developing a Silviculture PrescriptionCarter, David R.; Windmuller-Campione, Marcella (2017-06-16)College students, instructors, and the population at large are increasingly connected through smart phones and tablets, shifting how we interact at a personal and professional level. Smart devices allow students to interact with data and science in novel ways; however, these devices can also be distracting and inhibit student learning. Instructors at all levels of education are beginning to develop activities that utilize smart devices to increase learning. In this case study, smart devices were utilized to create videos in an upper division silviculture class at the University of Minnesota. Students created a final video prescription for a forest stand of their choosing, incorporating knowledge gained throughout the semester. Students’ videos were assessed on five major components: (1) the location and land-use history; (2) stand composition, structure, and stage of stand development; (3) goals and objectives; (4) silvicultural systems; and (5) correct use of terms. Video editing and video quality were not included in the assessment. The final video assignment was an alternative to a final exam. The final video assignment allowed students to practice their communication skills and think creatively; skills that have been repeatedly rated as important by prospective employers in the natural resource field. The majority of students surveyed (n = 21 of 23) responded positively to this project. This assignment can be easily modified for larger class sizes and different disciplines.