Browsing by Author "Carter, Robert Hansbrough"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Characterizing the Mechanical Properties of Composite Materials Using Tubular SamplesCarter, Robert Hansbrough (Virginia Tech, 2001-07-16)Application of composite materials to structures has presented the need for engineering analysis and modeling to understand the failure mechanisms. Unfortunately, composite materials, especially in a tubular geometry, present a situation where it is difficult to generate simple stress states that allow for the characterization of the ply-level properties. The present work focuses on calculating the mechanical characteristics, both on a global and local level, for composite laminate tubes. Global responses to axisymmetric test conditions (axial tension, torsion, and internal pressure) are measured on sections of the material. New analysis techniques are developed to use the global responses to calculate the ply level properties for tubular composite structures. Error analyses are performed to illustrate the sensitivity of the nonlinear regression methods to error in the experimental data. Ideal test matrices are proposed to provide the best data sets for improved accuracy of the property estimates. With these values, the stress and strain states can be calculated through the thickness of the material, enabling the application of failure criteria, and the calculation of failure envelopes.
- Mechanics of Hybrid Metal Matrix CompositesDibelka, Jessica Anne (Virginia Tech, 2013-04-27)The appeal of hybrid composites is the ability to create materials with properties which normally do not coexist such as high specific strength, stiffness, and toughness. One possible application for hybrid composites is as backplate materials in layered armor. Fiber reinforced composites have been used as backplate materials due to their potential to absorb more energy than monolithic materials at similar to lower weights through microfragmentation of the fiber, matrix, and fiber-matrix interface. Composite backplates are traditionally constructed from graphite or glass fiber reinforced epoxy composites. However, continuous alumina fiber-reinforced aluminum metal matrix composites (MMCs) have superior specific transverse and specific shear properties than epoxy composites. Unlike the epoxy composites, MMCs have the ability to absorb additional energy through plastic deformation of the metal matrix. Although, these enhanced properties may make continuous alumina reinforced MMCs advantageous for use as backplate materials, they still exhibit a low failure strain and therefore have low toughness. One possible solution to improve their energy absorption capabilities while maintaining the high specific stiffness and strength properties of continuous reinforced MMCs is through hybridization. To increase the strain to failure and energy absorption capability of a continuous alumina reinforced Nextel" MMC, it is laminated with a high failure strain Saffil® discontinuous alumina fiber layer. Uniaxial tensile testing of hybrid composites with varying Nextel" to Saffil® reinforcement ratios resulted in composites with non-catastrophic tensile failures and an increased strain to failure than the single reinforcement Nextel" MMC. The tensile behavior of six hybrid continuous and discontinuous alumina fiber reinforced MMCs are reported, as well as a description of the mechanics behind their unique behavior. Additionally, a study on the effects of fiber damage induced during processing is performed to obtain accurate as-processed fiber properties and improve single reinforced laminate strength predictions. A stochastic damage evolution model is used to predict failure of the continuous Nextel" fabric composite which is then applied to a finite element model to predict the progressive failure of two of the hybrid laminates.
- Transmitted light intensity as a nondestructive evaluation technique for glass/epoxy composite laminatesCarter, Robert Hansbrough (Virginia Tech, 1995-12-05)Selection of a nondestructive evaluation method for inspection of composite materials is a difficult process due to their multilithic nature and complex failure. Development of new techniques, which are more cost-effective and practical, are needed. Transmitted light intensity has the potential to satisfy these criteria. By measuring light intensity transmitted through a composite sample during fatigue testing, changes in the intensity were correlated to damage development within the sample. By applying image enhancement and analysis techniques, damage development due to matrix cracking and delamination, was detected and presented in images that were easy to understand.