Browsing by Author "Cecere, Thomas E."
Now showing 1 - 20 of 31
Results Per Page
Sort Options
- Alzheimer's Disease-Like Neurodegeneration in Porphyromonas gingivalis Infected Neurons with Persistent Expression of Active GingipainsHaditsch, Ursula; Roth, Theresa; Rodriguez, Leo; Hancock, Sandy; Cecere, Thomas E.; Nguyen, Mai; Arastu-Kapur, Shirin; Broce, Sean; Raha, Debasish; Lynch, Casey C.; Holsinger, Leslie J.; Dominy, Stephen S.; Ermini, Florian (IOS Press, 2020-01-01)Background: Porphyromonas gingivalis (P. gingivalis) and its gingipain virulence factors have been identified as pathogenic effectors in Alzheimer's disease (AD). In a recent study we demonstrated the presence of gingipains in over 90% of postmortem AD brains, with gingipains localizing to the cytoplasm of neurons. However, infection of neurons by P. gingivalis has not been previously reported. Objective: To demonstrate intraneuronal P. gingivalis and gingipain expression in vitro after infecting neurons derived from human inducible pluripotent stem cells (iPSC) with P. gingivalis for 24, 48, and 72 h. Methods: Infection was characterized by transmission electron microscopy, confocal microscopy, and bacterial colony forming unit assays. Gingipain expression was monitored by immunofluorescence and RT-qPCR, and protease activity monitored with activity-based probes. Neurodegenerative endpoints were assessed by immunofluorescence, western blot, and ELISA. Results: Neurons survived the initial infection and showed time dependent, infection induced cell death. P. gingivalis was found free in the cytoplasm or in lysosomes. Infected neurons displayed an accumulation of autophagic vacuoles and multivesicular bodies. Tau protein was strongly degraded, and phosphorylation increased at T231. Over time, the density of presynaptic boutons was decreased. Conclusion: P. gingivalis can invade and persist in mature neurons. Infected neurons display signs of AD-like neuropathology including the accumulation of autophagic vacuoles and multivesicular bodies, cytoskeleton disruption, an increase in phospho-tau/tau ratio, and synapse loss. Infection of iPSC-derived mature neurons by P. gingivalis provides a novel model system to study the cellular mechanisms leading to AD and to investigate the potential of new therapeutic approaches.
- Antibiotics ameliorate lupus-like symptoms in miceMu, Qinghui; Tavella, Vincent J.; Kirby, Jay L.; Cecere, Thomas E.; Chung, Matthias; Lee, Jiyoung; Li, Song; Ahmed, Sattar Ansar; Eden, Kristin; Allen, Irving C. (Nature, 2017-10-20)Gut microbiota and the immune system interact to maintain tissue homeostasis, but whether this interaction is involved in the pathogenesis of systemic lupus erythematosus (SLE) is unclear. Here we report that oral antibiotics given during active disease removed harmful bacteria from the gut microbiota and attenuated SLE-like disease in lupus-prone mice. Using MRL/lpr mice, we showed that antibiotics given after disease onset ameliorated systemic autoimmunity and kidney histopathology. They decreased IL-17-producing cells and increased the level of circulating IL-10. In addition, antibiotics removed Lachnospiraceae and increased the relative abundance of Lactobacillus spp., two groups of bacteria previously shown to be associated with deteriorated or improved symptoms in MRL/lpr mice, respectively. Moreover, we showed that the attenuated disease phenotype could be recapitulated with a single antibiotic vancomycin, which reshaped the gut microbiota and changed microbial functional pathways in a time-dependent manner. Furthermore, vancomycin treatment increased the barrier function of the intestinal epithelium, thus preventing the translocation of lipopolysaccharide, a cell wall component of Gram-negative Proteobacteria and known inducer of lupus in mice, into the circulation. These results suggest that mixed antibiotics or a single antibiotic vancomycin ameliorate SLE-like disease in MRL/lpr mice by changing the composition of gut microbiota.
- Canine Snake-Eye Myelopathy: Clinical, Magnetic Resonance Imaging, and Pathologic Findings in Four CasesRossmeisl, John H. Jr.; Cecere, Thomas E.; Kortz, Gregg D.; Geiger, David A.; Shinn, Richard L.; Hinckley, Jonathan; Caudell, David L.; Stahle, Jessica A. (Frontiers, 2019-07-05)Intramedullary signal change (ISC) is a non-specific finding that is frequently observed on magnetic resonance imaging (MRI) examinations of the canine spinal cord. ISC can represent a variety of primary pathological processes such as neoplasms or myelitides or secondary changes such as edema, cysts, gliosis, or myelomalacia. An unusual phenotype of ISC is the "snake-eye" myelopathy (SEM), which refers to bilaterally symmetric T2 hyperintensities preferentially affecting the ventral horn gray matter on transverse MR images, which resemble a pair of snake's eyes. The pathophysiology of SEM is poorly understood in humans, and this imaging finding may be associated with cervical spondylotic myelopathy, spinal cord ischemia, ossification of the posterior longitudinal ligament, amyotrophic lateral sclerosis, and Hirayama disease. Here we describe four dogs with cervical MRI examinations consistent with an SEM-like phenotype. All dogs initially presented with a central cord syndrome or tetraparesis referable to a C6-T2 neuroanatomic localization, which was attributed to disc-associated spinal cord compression in three cases, while one dog had the SEM-like phenotype with no identifiable etiology. Once the SEM-like phenotype was present on MRI examinations, dogs demonstrated insidious clinical deterioration despite therapeutic interventions. Deterioration was characterized by lower motor neuron weakness and neurogenic muscle atrophy progressing to paralysis in the thoracic limbs, while neurological functions caudal to the level of the SEM-like lesion remained largely preserved for months to years thereafter. Neuropathological features of the SEM-like phenotype include multisegmental cavitations and poliomyelomalacia of laminae VI-IX of the caudal cervical spinal cord, although the lesion evolved into pan-necrosis of gray matter with extension into the adjacent white matter in one case with an 8 years history of progressive disease. Although the pathophysiology of SEM remains unknown, the topographical distribution and appearance of lesions is suggestive of a vascular disorder. As the SEM-like phenotype was uniformly characterized by longitudinally and circumferentially extensive neuronal necrosis, results of this small case series indicate that dogs with clinical signs of central cord syndrome and the SEM-like phenotype involving the cervicothoracic intumescence on MR examinations have a poor prognosis for the preservation or recovery of thoracic limb motor function.
- Characterization of the Expression of Angiogenic Factors in Cutaneous Squamous Cell Carcinoma of Domestic CatsGudenschwager-Basso, Erwin Kristobal; Stevenson, Valentina; Sponenberg, D. Phillip; Cecere, Thomas E.; Huckle, William R. (MDPI, 2022-07-21)Cutaneous squamous cell carcinoma (CSCC) is a common malignant skin cancer with a significant impact on health, and it is important to determine the degree of reliance of CSCC on angiogenesis for growth and metastasis. Major regulators of angiogenesis are the vascular endothelial growth factor (VEGF) family and their associated receptors. Alternative pre-mRNA splicing produces multiple isoforms of VEGF-A and PLGF with distinct biological properties. Several studies highlight the function of VEGF-A in CSCC, but there are no studies of the different isoforms of VEGF-A and PLGF for this neoplasm. We characterized the expression of three isoforms of VEGF-A, two isoforms of PLGF, and their receptors in cat CSCC biopsies compared to normal haired skin (NHS). Although our results revealed no significant changes in transcript levels of panVEGF-A or their isoforms, the mRNA levels of PLGF I and the receptors Flt-1 and KDR were downregulated in CSCC compared to NHS. Differences were observed in ligand:receptor mRNA expression ratio, with the expression of VEGF-A relative to its receptor KDR higher in CSCC, which is consistent with our hypothesis and prior human SCC studies. Immunolocalization in tissue showed increased expression of all measured factors and receptors in tumor cells compared to NHS and surrounding vasculature. We conclude that the factors measured may play a pivotal role in CSCC growth, although further studies are needed to clarify the role of angiogenic factors in feline CSCC.
- Control of lupus nephritis by changes of gut microbiotaMu, Qinghui; Zhang, Husen; Liao, Xiaofeng; Lin, Kaisen; Liu, Hualan; Edwards, Michael R.; Ahmed, Sattar Ansar; Yuan, Ruoxi; Li, Liwu; Cecere, Thomas E.; Branson, David B.; Kirby, Jay L.; Goswami, Poorna; Leeth, Caroline M.; Read, Kaitlin A.; Oestreich, Kenneth J.; Vieson, Miranda D.; Reilly, Christopher M.; Luo, Xin M. (2017-07-11)Background: Systemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether. Results: Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/lpr, we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains (Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, and Lactobacillus gasseri), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/lpr mice possessed a “leaky” gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner. Conclusions: This work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupusassociated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.
- Deletion of microRNA-183-96-182 Cluster in Lymphocytes Suppresses Anti-DsDNA Autoantibody Production and IgG Deposition in the Kidneys in C57BL/6-Fas(lpr/lpr) MiceWang, Zhuang; Heid, Bettina; Lu, Ran; Sachdeva, Mohit; Edwards, Michael R.; Ren, JingJing; Cecere, Thomas E.; Khan, Deena; Jeboda, Taschua; Kirsch, David G.; Reilly, Christopher M.; Dai, Rujuan; Ahmed, S. Ansar (Frontiers, 2022-07-07)Dysregulated miRNAs have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). Our previous study reported a substantial increase in three miRNAs located at the miR-183-96-182 cluster (miR-183C) in several autoimmune lupus-prone mice, including MRL/lpr and C57BL/6-lpr (B6/lpr). This study reports that in vitro inhibition of miR-182 alone or miR-183C by specific antagomirs in activated splenocytes from autoimmune-prone MRL/lpr and control MRL mice significantly reduced lupus-related inflammatory cytokines, interferon-gamma (IFN gamma), and IL-6 production. To further characterize the role of miR-182 and miR-183C cluster in vivo in lupus-like disease and lymphocyte phenotypes, we used hCD2-iCre to generate B6/lpr mice with conditional deletion of miR-182 or miR-183C in CD2(+) lymphocytes (miR-182(-/-)B6/lpr and miR-183C(-/-)B6/lpr). The miR-182(-/-)B6/lpr and miR-183C(-/-)B6/lpr mice had significantly reduced deposition of IgG immunocomplexes in the kidney when compared to their respective littermate controls, although there appeared to be no remarkable changes in renal pathology. Importantly, we observed a significant reduction of serum anti-dsDNA autoantibodies in miR-183C(-/-)B6/lpr mice after reaching 24 weeks-of age compared to age-matched miR-183C(fl/fl)B6/lpr controls. In vitro activated splenocytes from miR-182(-/-)B6/lpr mice and miR-183C(-/-)B6/lpr mice showed reduced ability to produce lupus-associated IFN gamma. Forkhead box O1(Foxo1), a previously validated miR-183C miRNAs target, was increased in the splenic CD4(+) cells of miR-182(-/-)B6/lpr and miR-183C(-/-)B6/lpr mice. Furthermore, in vitro inhibition of Foxo1 with siRNA in splenocytes from miR-182(-/-)B6/lpr and miR-183C(-/-)B6/lpr mice significantly increased IFN gamma expression following anti-CD3/CD28 stimulation, suggesting that miR-182 and miR-183C miRNAs regulate the inflammatory IFN gamma in splenocytes via targeting Foxo1. The deletion of either miR-182 alone or the whole miR-183C cluster, however, had no marked effect on the composition of T and B cell subsets in the spleens of B6/lpr mice. There were similar percentages of CD4(+), CD8(+), CD19(+), as well as Tregs, follicular helper T (T-FH), germinal center B (GCB), and plasma cells in the miR-183C(-/-)B6/lpr and miR-182(-/-)B6/lpr mice and their respective littermate controls, miR-183C(fl/fl)B6/lpr and miR-182(fl/fl)B6/lpr mice. Together, our data demonstrate a role of miR-183C in the regulation of anti-dsDNA autoantibody production in vivo in B6/lpr mice and the induction of IFN gamma in in vitro activated splenocytes from B6/lpr mice.
- Diagnostic accuracy of stereotactic brain biopsy for intracranial neoplasia in dogs: Comparison of biopsy, surgical resection, and necropsy specimensKani, Yukitaka; Cecere, Thomas E.; Lahmers, Kevin K.; LeRoith, Tanya; Zimmerman, Kurt L.; Isom, Scott; Hsu, Fang-Chi; Debinski, Waldemar; Robertson, John L.; Rossmeisl, John H. Jr. (American College of Veterinary Internal Medicine, 2019-05)Background Stereotactic brain biopsy (SBB) is a technique that allows for definitive diagnosis of brain lesions. Little information is available regarding the diagnostic utility of SBB in dogs with intracranial diseases. Objective To investigate the diagnostic accuracy (DA) of SBB in dogs with brain tumors. Animals Thirty-one client-owned dogs that underwent SBB followed by surgical resection or necropsy examinations. Methods Retrospective observational study. Two pathologists blinded to SBB and reference standard diagnoses reviewed histologic specimens and typed and graded tumors according to World Health Organization and revised canine glioma classification criteria. Agreement between tumor type and grade from SBB were compared to reference standards and assessed using kappa statistics. Patient and technical factors associated with agreement also were examined. Results Stereotactic brain biopsy specimens were obtained from 24 dogs with gliomas and 7 with meningiomas. Tumor type agreement between SBB and the reference standard was observed in 30/31 cases (kappa = 0.95). Diagnostic concordance was perfect for meningiomas. Grade agreement among gliomas was observed in 18/23 cases (kappa = 0.47). Stereotactic brain biopsy underrepresented the reference standard glioma grade in cases with disagreement. The DA of SBB was 81%, with agreement noted in 56/69 biopsy samples. Smaller tumors and fewer SBB specimens obtained were significantly associated with diagnostic discordance. Conclusions and Clinical Importance The DA of SBB readily allows for the diagnosis of common brain tumors in dogs. Although glioma grade discordance was frequent, diagnoses obtained from SBB are sufficient to currently inform therapeutic decisions. Multiple SBB specimens should be collected to maximize DA.
- Feasibility and accuracy of 3D printed patient-specific skull contoured brain biopsy guidesShinn, Richard L.; Park, Clair; DeBose, Kyrille; Hsu, Fang-Chi; Cecere, Thomas E.; Rossmeisl, John H. Jr. (2021-07)Objective Design 3D printed skull contoured brain biopsy guides (3D-SCGs) from computed tomography (CT) or T1-weighted magnetic resonance imaging (T1W MRI). Study Design Feasibility study. Sample Population Five beagle dog cadavers and two client-owned dogs with brain tumors. Methods Helical CT and T1W MRI were performed on cadavers. Planned target point was the head of the caudate nucleus. Three-dimensional-SCGs were created from CT and MRI using commercially available open-source software. Using 3D-SCGs, biopsy needles were placed into the caudate nucleus in cadavers, and CT was performed to assess needle placement accuracy, followed by histopathology. Three-dimensional-SCGs were then created and used to perform in vivo brain tumor biopsies. Results No statistical difference was found between the planned target point and needle placement. Median needle placement error for all planned target points was 2.7 mm (range: 0.86-4.5 mm). No difference in accuracy was detected between MRI and CT-designed 3D-SCGs. Median needle placement error for the CT was 2.8 mm (range: 0.86-4.5 mm), and 2.2 mm (range: 1.7-2.7 mm) for MRI. Biopsy needles were successfully placed into the target in the two dogs with brain tumors and biopsy was successfully acquired in one dog. Conclusion Three-dimensional-SCGs designed from CT or T1W MRI allowed needle placement within 4.5 mm of the intended target in all procedures, resulting in successful biopsy in one of two live dogs. Clinical Significance This feasibility study justifies further evaluation of 3D-SCGs as alternatives in facilities that do not have access to stereotactic brain biopsy.
- Frame-Based Stereotactic Biopsy of Canine Brain Masses: Technique and Clinical Results in 26 CasesRossmeisl, John H. Jr.; Andriani, Rudy T.; Cecere, Thomas E.; Lahmers, Kevin K.; LeRoith, Tanya; Zimmerman, Kurt L.; Gibo, Denise M.; Debinski, Waldemar (2015)This report describes the methodology, diagnostic yield, and adverse events (AE) associated with frame-based stereotactic brain biopsies (FBSB) obtained from 26 dogs with solitary forebrain lesions. Medical records were reviewed from dogs that underwent FBSB using two stereotactic headframes designed for use in small animals and compatible with computed tomographic (CT) and magnetic resonance (MR) imaging. Stereotactic plans were generated from MR and CT images using commercial software, and FBSB performed both with (14/26) and without intraoperative image guidance. Records were reviewed for diagnostic yield, defined as the proportion of biopsies producing a specific neuropathological diagnosis, AE associated with FBSB, and risk factors for the development of AE. Postprocedural AE were evaluated in 19/26 dogs that did not proceed to a therapeutic intervention immediately following biopsy. Biopsy targets included intra-axial telencephalic masses (24/26), one intra-axial diencephalic mass, and one extra-axial parasellar mass. The median target volume was 1.99 cm(3). No differences in patient, lesion, or outcome variables were observed between the two headframe systems used or between FBSB performed with or without intraoperative CT guidance. The diagnostic yield of FBSB was 94.6%. Needle placement error was a significant risk factor associated with procurement of non-diagnostic biopsy specimens. Gliomas were diagnosed in 24/26 dogs, and meningioma and granulomatous meningoencephalitis in 1 dog each. AE directly related to FBSB were observed in a total of 7/26 (27%) of dogs. Biopsy-associated clinical morbidity, manifesting as seizures and transient neurological deterioration, occurred in 3/19 (16%) of dogs. The case fatality rate was 5.2% (1/19 dogs), with death attributable to intracranial hemorrhage. FBSB using the described apparatus was relatively safe and effective at providing neuropathological diagnoses in dogs with focal forebrain lesions.
- Glycosylation of a Capsule-Like Complex (CLC) by Francisella novicida Is Required for Virulence and Partial Protective Immunity in MiceCatanzaro, Kelly C. Freudenberger; Champion, Anna E.; Mohapatra, Nrusingh; Cecere, Thomas E.; Inzana, Thomas J. (Frontiers, 2017-05-30)Francisella tularensis is a Gram-negative bacterium and the etiologic agent of tularemia. F. tularensis may appear encapsulated when examined by transmission electron microscopy (TEM), which is due to production of an extracellular capsule-like complex (CLC) when the bacterium is grown under specific environmental conditions. Deletion of two glycosylation genes in the live vaccine strain (LVS) results in loss of apparent CLC and attenuation of LVS in mice. In contrast, F. novicida, which is also highly virulent for mice, is reported to be non-encapsulated. However, the F. novicida genome contains a putative polysaccharide locus with homology to the CLC glycosylation locus in F. tularensis. Following daily subculture of F. novicida in Chamberlain's defined medium, an electron dense material surrounding F. novicida, similar to the F. tularensis CLC, was evident. Extraction with urea effectively removed the CLC, and compositional analysis indicated the extract contained galactose, glucose, mannose, and multiple proteins, similar to those found in the F. tularensis CLC. The same glycosylation genes deleted in LVS were targeted for deletion in F. novicida by allelic exchange using the same mutagenesis vector used for mutagenesis of LVS. In contrast, this mutation also resulted in the loss of five additional genes immediately upstream of the targeted mutation (all within the glycosylation locus), resulting in strain F. novicida Delta 1212-1218. The subcultured mutant F. novicida Delta 1212-1218 was CLC-deficient and the CLC contained significantly less carbohydrate than the subcultured parent strain. The mutant was severely attenuated in BALB/c mice inoculated intranasally, as determined by the lower number of F. novicida Delta 1212-1218 recovered in tissues compared to the parent, and by clearance of the mutant by 10-14 days post-challenge. Mice immunized intranasally with F. novicida Delta 1212-1218 were partially protected against challenge with the parent, produced significantly reduced levels of inflammatory cytokines, and their spleens contained only areas of lymphoid hyperplasia, whereas controlmice challenged with the parent exhibited hypercytokinemia and splenic necrosis. Therefore, F. novicida is capable of producing a CLC similar to that of F. tularensis, and glycosylation of the CLC contributed to F. novicida virulence and immunoprotection.
- Gut Microbiota and Bacterial DNA Suppress Autoimmunity by Stimulating Regulatory B Cells in a Murine Model of LupusMu, Qinghui; Edwards, Michael R.; Swartwout, Brianna K.; Cabana-Puig, Xavier; Mao, Jiangdi; Zhu, Jing; Grieco, Joseph P.; Cecere, Thomas E.; Prakash, Meeta; Reilly, Christopher M.; Puglisi, Christopher; Bachali, Prathyusha; Grammer, Amrie C.; Lipsky, Peter E.; Luo, Xin M. (2020-11-10)Autoimmune diseases, such as systemic lupus erythematosus, are characterized by excessive inflammation in response to self-antigens. Loss of appropriate immunoregulatory mechanisms contribute to disease exacerbation. We previously showed the suppressive effect of vancomycin treatment during the "active-disease" stage of lupus. In this study, we sought to understand the effect of the same treatment given before disease onset. To develop a model in which to test the regulatory role of the gut microbiota in modifying autoimmunity, we treated lupus-prone mice with vancomycin in the period before disease development (3-8 weeks of age). We found that administration of vancomycin to female MRL/lpr mice early, only during the pre-disease period but not from 3 to 15 weeks of age, led to disease exacerbation. Early vancomycin administration also reduced splenic regulatory B (Breg) cell numbers, as well as reduced circulating IL-10 and IL-35 in 8-week old mice. Further, we found that during the pre-disease period, administration of activated IL-10 producing Breg cells to mice treated with vancomycin suppressed lupus initiation, and that bacterial DNA from the gut microbiota was an inducer of Breg function. Oral gavage of bacterial DNA to mice treated with vancomycin increased Breg cells in the spleen and mesenteric lymph node at 8 weeks of age and reduced autoimmune disease severity at 15 weeks. This work suggests that a form of oral tolerance induced by bacterial DNA-mediated expansion of Breg cells suppress disease onset in the autoimmune-prone MRL/lpr mouse model. Future studies are warranted to further define the mechanism behind bacterial DNA promoting Breg cells.
- Immune modulation mechanisms of porcine circovirus type 2Richmond, Owen Benjamin (Virginia Tech, 2015-06-29)Porcine circovirus associated disease (PCVAD) is an umbrella term for a multitude of diseases and syndromes that have a negative impact on the health and economics of pig production operations throughout the world. Porcine circovirus type 2 is the causative agent of PCVAD; however the presence of PCV2 alone is rarely enough to cause clinical disease. In order for the full development of PCVAD the presence of a co-infecting pathogen is required. The mechanisms by which co-infection leads to disease remain ongoing areas of research, but it is thought that host immune modulations by PCV2 or a co-infecting pathogen are critical in the pathogenesis of PCVAD. In the first study of this dissertation the ability of PCV2 to induce regulatory T-cells (Tregs) and alter cytokine production was evaluated in vivo. The addition of PCV2 to a multiple viral challenge resulted in a significant increase in Tregs. Levels of IL-10 and IFN-γ were also found to be altered when PCV2 was added to a multiple viral challenge. In further experiments, monocyte derived dendritic cells (MoDC) were infected with different combinations and strains of PCV2 and PRRSV in vitro and evaluated for expression levels of programmed death ligand-1 (PD-L1), IL-10, CD86, swine leukocyte antigen-1 (SLA-1), and swine leukocyte antigen-2 (SLA-2). Expression levels of PD-L1 were significantly increased in PCV2 and PRRSV co-infected MoDCs. SLA-1, SLA-2, and CD86 expression levels were significantly decreased in the MoDC treatment groups containing both PCV2 and virulent stains of PRRSV. MoDC IL-10 expression was significantly increased by PCV2 and virulent strains of PRRSV co-infection. Finally, we investigated the role of the PD-L1/programmed death ligand-1 (PD-1) axis in porcine lymphocyte anergy, apoptosis, and the induction of Tregs. Lymphocyte populations with normal PD-1 expression had significantly higher percentages of anergic and apoptotic lymphocytes, and CD4+CD25HighFoxP3+ Tregs when compared to a PD-1 deficient lymphocyte population. The findings from these studies indicate host immune modulation by PCV2 in vivo and the development of a regulatory phenotype of dendritic cell following PCV2/PRRSV co-infections in vitro that may contribute to a dysfunctional adaptive immune response and the overall pathogenesis of PCVAD.
- Innate Immune Cells may be Involved in Prepubertal Bovine Mammary DevelopmentBeaudry, Kirsten Leah (Virginia Tech, 2015-07-09)Pre-pubertal bovine mammary development involves ductal and stromal tissue changes. In mice, this process is impacted by presence of innate immune cells. Whether or not such immune cells are present or involved in bovine mammary development is unknown. We studied the presence, location and changes in numbers of eosinophils, mast cells and macrophages in pre-pubertal bovine mammary tissue. Chemical stains and immunofluorescence were used to identify the cells in formalin fixed, paraffin embedded mammary tissue. The first set (ONT) included samples (n=4/week) from birth to 6 weeks of age. Another set (OVX) determined the influence of ovaries, 19 animals were intact or ovariectomized 30 days before sampling. They were 90, 120 or 150 days old at examination. The third set (EST) allowed examination of the potential influence of exogenous estrogen on innate immune cells in the mammary gland. Samples were from calves given estrogen implants (n=6) or placebo (n=4) at 56 days old, and sampled at 70 days old. We examined 20 images each of NEAR and FAR stroma from every animal. More eosinophils were observed in NEAR versus FAR in the ONT and OVX , more mast cells observed in NEAR versus FAR in ONT. More macrophages were observed in NEAR versus FAR in ONT and EST. We show, for the first time, that innate immune cells are present in prepubertal bovine mammary tissue and that abundance is related to the epithelial structure. We suggest a possible role for these cells in control of bovine mammary development.
- Investigations into the role of exogenous estrogenic endocrine disrupting chemicals on immune dysregulation in autoimmune diseaseEdwards, Michael Richard (Virginia Tech, 2019-08-07)Estrogenic endocrine disrupting chemicals (EEDCs) are defined as chemicals that bind to estrogen receptors (ERs) and augment estrogenic functions, either through promoting or blocking estrogen receptor signaling. Recent reports highlight the growing concern surrounding environmental exposure to EEDCs and immune system modulation. A commonly prescribed EEDC, 17α-ethinyl estradiol, is a synthetic analog of 17β-estradiol (E2), and is also found in many environmental reservoirs of human and animal exposure. Little is known regarding the immunomodulatory effects of this EEDC. Autoimmune diseases, such as systemic lupus erythematosus (SLE), are characterized by a dysregulated immune system that has lost tolerance to self-antigens. The pathogenesis of SLE is still poorly understood. However, it is likely that genetics, epigenetics, hormones, and environmental factors, such as EEDC exposure, contribute to the pathogenesis and severity of SLE. The work presented in this dissertation focused on investigating the immunomodulatory effects of exogenous estrogens in mouse models of SLE. Chapter 1 describes an overview of environmental endocrine disruptors and autoimmune disease, with a particular emphasis on estrogens. Chapter 2 represents a review of the current and pertinent literature surrounding the contributions of sex differences, hormones, and EDCs to the induction of autoantibodies and development of autoimmunity, as well as the contributions of anti- microbial responses to SLE. We explored the contribution of dietary components to SLE disease severity. Mice fed a diet devoid of exogenous phytoestrogens developed significantly reduced glomerulonephritis and glomerular immune complex deposition compared to mice fed a diet containing soy isoflavones. Diet also influenced cytokine production and epigenetics of LPS-stimulated splenic leukocytes. We identified similar effects of E2 and EE implantation with regards to innate immunity, and distinct cellular subset, cytokine production profiles, gene expression, and epigenetic responses between E2 and EE treated NZB/WF1 mice. Oral exposure to a very low human relevant dose of EE promoted glomerulonephritis and augmented responses to viral and bacterial mimics in MRL/lpr mice. Overall, our findings suggest that chronic exposure to environmental EEDCs exacerbates lupus nephritis and alter an already dysregulated immune system in genetically susceptible individuals and have greatly expanded the current body of knowledge surrounding 17α-ethinyl estradiol.
- Lactobacillus spp. act in synergy to attenuate splenomegaly and lymphadenopathy in lupus-prone MRL/lpr miceCabana-Puig, Xavier; Mu, Qinghui; Lu, Ran; Swartwout, Brianna; Abdelhamid, Leila; Zhu, Jing; Prakash, Meeta; Cecere, Thomas E.; Wang, Zhuang; Callaway, Sabrina; Sun, Sha; Reilly, Christopher M.; Ahmed, S. Ansar; Luo, Xin M. (Frontiers, 2022-07-28)Commensal bacteria and the immune system have a close and strong relationship that maintains a balance to control inflammation. Alterations of the microbiota, known as dysbiosis, can direct reactivity to self-antigens not only in the intestinal mucosa but also at the systemic level. Our laboratory previously reported gut dysbiosis, particularly lower abundance of bacteria in the family Lactobacillaceae, in lupus-prone MRL/lpr mice, a model of systemic autoimmunity. Restoring the microbiota with a mix of 5 different Lactobacillus species (spp.), L. reuteri, L. oris, L. johnsonii, L. gasseri and L. rhamnosus, attenuated lupus-liked clinical signs, including splenomegaly and lymphadenopathy. However, our understanding of the mechanism was limited. In this study, we first investigated the effects of individual species. Surprisingly, none of the species individually recapitulated the benefits of the mix. Instead, Lactobacillus spp. acted synergistically to attenuate splenomegaly and renal lymphadenopathy through secreted factors and a CX3CR1-dependent mechanism. Interestingly, oral administration of MRS broth exerted the same benefits likely through increasing the relative abundance of endogenous Lactobacillus spp. Mechanistically, we found increased percentages of FOXP3-negative type 1 regulatory T cells with administration of the mix in both spleen and mesenteric lymph nodes. In addition, oral gavage of Lactobacillus spp. decreased the percentage of central memory T cells while increasing that of effector memory T cells in the lymphoid organs. Furthermore, a decreased percentage of double negative T cells was observed in the spleen with the mix. These results suggest that Lactobacillus spp. might act on T cells to attenuate splenomegaly and lymphadenopathy. Together, this study advances our understanding of how Lactobacillus spp. attenuate lupus in MRL/lpr mice. The synergistic action of these bacteria suggests that multiple probiotic bacteria in combination may dampen systemic autoimmunity and benefit lupus patients.
- Low-dose 17α-ethinyl estradiol (EE) exposure exacerbates lupus renal disease and modulates immune responses to TLR7/9 agonists in genetically autoimmune-prone miceEdwards, Michael R.; Dai, Rujuan; Heid, Bettina; Cowan, Catharine; Werre, Stephen R.; Cecere, Thomas E.; Ahmed, Sattar Ansar (Springer Nature, 2020)Estrogens have been shown to regulate the immune system and modulate multiple autoimmune diseases. 17α-ethinyl estradiol (EE), a synthetic analog of 17β-estradiol, is prescribed commonly and found in oral contraceptives and hormone replacement therapies. Surprisingly, few studies have investigated the immunoregulatory effects of exposure to EE, especially in autoimmunity. In this study, we exposed autoimmune-prone female MRL/lpr mice to a human-relevant dose of EE through the oral route of exposure. Since lupus patients are prone to infections, groups of mice were injected with viral (Imiquimod, a TLR7 agonist) or bacterial (ODN 2395, a TLR9 agonist) surrogates. We then evaluated autoimmune disease parameters, kidney disease, and response to in vivo TLR7/9 pathogenic signals. EE-exposed mice had increased proteinuria as early as 7 weeks of age. Proteinuria, blood urea nitrogen, and glomerular immune complex deposition were also exacerbated when compared to controls. Production of cytokines by splenic leukocytes were altered in EE-exposed mice. Our study shows that oral exposure to EE, even at a very low dose, can exacerbate azotemia, increase clinical markers of renal disease, enhance glomerular immune complex deposition, and modulate TLR7/9 cytokine production in female MRL/lpr mice. This study may have implications for EE-exposure risk for genetically lupus-prone individuals.
- Maximizing Local Access to Therapeutic Deliveries in Glioblastoma: Evaluating the utility and mechanisms of potential adverse events for minimally invasive diagnostic two novel therapeutic techniques for brain tumorsKani Kani, Yukitaka Steve (Virginia Tech, 2022-09-29)Glioblastoma (GBM) is the most common adult malignant glioma (MG) variant, and the median survival of persons with GBM is about 2 years, even with aggressive treatments. Dogs and humans are the only species in which brain tumors commonly develop spontaneously, with an estimated post-mortem frequency of primary brain tumors approximating 2% in both species. Gliomas represent about 35% of all canine primary brain tumors, with high-grade oligodendroglioma and astrocytoma phenotypes accounting for about 70% of all canine gliomas. Canine gliomas are also treated using surgical, radiotherapeutic, and chemotherapeutic regimens similar to those used in humans. The efficacy of these therapies in dogs with MG is also poor, with median survival times ranging from 3-8 months, which closely mirrors the dismal prognosis associated with human GBM. Thus, treatment of MG represents a current and critically unmet need in both human and veterinary medicine. In this work, we investigate minimally invasive methods to access the brain for the purposes of ultimately improving the diagnosis and treatment of malignant brain tumors. Chapter 1 reviews the current clinical challenges associated with the treatment of GBM, highlights the value of using the spontaneous canine glioma model in translational brain tumor studies, and introduces High-Frequency Irreversible Electroporation (H-FIRE) and Convection Enhanced Delivery (CED), which are two novel treatment platforms for GBM being developed in our lab. In Chapter 2, we demonstrate that definitive diagnosis of brain tumors, a critical first step in patient management, can be safely and accurately performed in dogs with naturally occurring brain tumors using a stereotactic brain biopsy procedure. Chapter 3 evaluates the in vivo safety and biocompatibility of fiberoptic microneedle devices, a major technical component of our convection-enhanced thermotherapy catheter system (CETCS), chronically implanted in the rodent brain. The CETCS is a novel technology being developed and used in our laboratory to improve the delivery of drugs to brain tumors using CED. This study provides regulatory data fundamental to the commercialization of the CETCS device for brain tumor treatment by illustrating that the device did not cause clinically significant neurological complications and resulted in mild pathologic changes in brain tissue, similar to other types of devices designed and approved for use in the brain. In Chapters 4 and 5 we explore possible bystander effects of H-FIRE on glutamate metabolism in the brain. H-FIRE has been shown to be able to both ablate brain tumors as well as disrupt the blood-brain barrier (BBB). As these therapeutic effects of H-FIRE are dependent on applying electrical fields to the tissue that either reversibly permeabilize the cell membrane, allowing treated cells to survive, or permanently disrupt the structure of the cell membrane, causing cell death, we hypothesized that altering the membrane permeability with HFIRE would increase the extracellular glutamate concentrations and contribute to excitotoxic brain tissue damage. Chapters 4 used in vitro brain cell culture systems and in vivo experiments in normal and glioma-bearing rat brains to determine if glutamate release in the brain occurs as a bystander effect following H-FIRE treatment, identify concentrations of glutamate necessary to induce death of cells or BBB disruption, and characterize glutamatergic gene expression in response to H-FIRE treatment. Chapter 5 describes the use of magnetic resonance spectroscopic and spatial transcriptomic methods to further quantify the in vivo effects of H-FIRE treatment on glutamate release and metabolism in dogs with spontaneous brain tumors. The in vitro results indicated that the magnitude of glutamate release following H-FIRE is insufficient to induce cytotoxicity in normal or neoplastic brain cell lines, and also did not increase the permeability of the BBB. In our in vivo model systems, we documented significant, transient post-H-FIRE increases in glutamate to concentrations previously associated with excitotoxicty, with upregulation of the expression of genes involved with ionotropic and metabotropic glutamatergic receptor signaling. A contemporaneous upregulation of genes associated with glutamate uptake and recycling were also noted, indicating an adaptive, protective response to the glutamate release. Our work summarily demonstrates that the diagnosis and potential treatment of malignant brain tumors can be achieved through the use of minimally invasive techniques that provide local access to brain tissue. While complications will always be possible anytime the brain is manipulated surgically, and further investigations are required to characterize the spectrum and mechanisms of adverse events that can occur following CETCS CED and H-FIRE treatment, our results support the continued development of these novel therapeutic platforms for the treatment of GBM.
- Natural History of Biliary Sludge in DogsDemonaco, Stefanie (Virginia Tech, 2015-08-27)Background: Biliary sludge is associated with gallbladder (GB) dysmotility and mucus hypersecretion suggesting that these factors could lead to GB mucoceles. If biliary sludge does progress to GB mucoceles, treatments to reduce the production and progression of sludge are warranted. Objectives: The aim of this study was to determine the natural history of biliary sludge in dogs. Animals: Healthy, client-owned dogs (n=74) screened for biliary sludge; 42 affected dogs identified Methods: Prospective, observational design. Serial ultrasound examinations and biochemistries were evaluated over 1 year. The following were determined: percentage of the GB filled with sludge (mild (0.01%-24.4%), moderate (24.5%-49.4%), moderate to severe (49.5%-74.4%), severe (74.5%-100%)), gravity dependency of sludge, GB dimensions, and biochemical indices (ALT, GGT, ALP, total bilirubin, albumin, total calcium, triglycerides, and cholesterol). Mixed model ANOVA, Friedman chi-square, Mantel-Haenzsel chi-square tests, and Kruskal-Wallis test were performed to detect significant changes in these parameters. Significance at P <0.05. Results: After 1 year of follow-up, the percentage of the GB filled by sludge was mild (34%), moderate (47%), moderate to severe (13%), severe (3%), or absent (3%) with no significant difference in the median degree of biliary sludge within 1 year (P=0.36). There was no significant change in the gravity dependency of sludge over 1 year. Dogs had resolved (2%), decreased (19%), static (40%), increased (29%), or recurrent (10%) sludge at the conclusion of the study. Biochemical indices or GB volume were not significantly different over time or among groups. Conclusion: Biliary sludge is prevalent, affected dogs remain asymptomatic, and it rarely resolves in healthy dogs over a period of 1 year. Some dogs developed non-gravity dependent sludge within 1 year, which may indicate changes in consistency.
- Non-resolving pro-inflammatory macrophage polarization by super-low doses of bacterial endotoxinRahtes, Allison Anne (Virginia Tech, 2020-01-10)Subclinical endotoxemia (low levels of circulating bacterial endotoxin) has been observed in patients suffering from chronic inflammatory diseases such as atherosclerosis, diabetes, and obesity. However, the link between this condition and chronic inflammation is poorly understood. Previous work from our lab has shown that chronic exposure to super-low doses of bacterial endotoxin (LPS) aggravates atherosclerosis resulting in increased plaque size and instability in a macrophage-dependent manner in a mouse model of atherosclerosis. Further, we showed that super-low dose LPS (SLD-LPS) treatment was able to inhibit lysosomal fusion in immortalized macrophages. However, this was done under more acute treatment conditions. The aim of this project was to examine the molecular mechanisms by which chronic SLD-LPS may polarize macrophages to a non-resolving pro-inflammatory state consistent with chronic inflammation. This was carried out in two projects, the first a more broad phenotypic paper showing the disruption in homeostasis by chronic SLD-LPS in immortalized macrophages, while the second uses primary bone marrow-derived mouse macrophages to identify specific molecular signaling pathways used by chronic SLD-LPS. Here we show that chronic SLD-LPS led to the novel upregulation of pro-inflammatory mediators p62 and ccl2 with simultaneous downregulation of homeostatic mediators Nrf2 and slc40a1 in immortalized wild-type mouse macrophages. Further we showed this effect was reversed using the homeostatic restorative agent sodium phenylbutyrate (4-PBA), a newly reported activity for this reagent in mouse macrophages. This indicated that a disruption in homeostasis, possibly involving autophagy, may be responsible for the non-resolving pro-inflammatory polarization of macrophages. Therefore, in our second project, we further explored the effect of chronic SLD-LPS treatment on the homeostatic arm of the response by focusing on the Nrf2 inhibitor Keap1. Here we show that chronic SLD-LPS results in an accumulation of Keap1 in mouse bone marrow-derived macrophages, an effect specific to chronic SLD-LPS, as high doses of LPS failed to induce Keap1. We suggest that this effect may be related to a disruption in lysosomal fusion as evidenced by accumulation of autophagy flux markers MLKL and p62. Further, we show that these effects are dependent on the non-traditional TLR4 adaptor TRAM, suggesting an alternative dose-dependent signaling pathway for LPS. Together this work identifies novel signaling mechanisms involved in non-resolving pro-inflammatory polarization of murine macrophages, providing new insight behind how chronic super-low dose LPS exposure may lead to chronic inflammation.
- Paradoxical Effects of All-Trans-Retinoic Acid on Lupus-Like Disease in the MRL/lpr Mouse ModelLiao, Xiaofeng; Ren, Jingjing; Wei, Cheng-Hsin; Ross, A. Catharine; Cecere, Thomas E.; Jortner, Bernard S.; Ahmed, Sattar Ansar; Luo, Xin M. (PLOS, 2015-03-16)Roles of all-trans-retinoic acid (tRA), a metabolite of vitamin A (VA), in both tolerogenic and immunogenic responses are documented. However, how tRA affects the development of systemic autoimmunity is poorly understood. Here we demonstrate that tRA have paradoxical effects on the development of autoimmune lupus in the MRL/lpr mouse model. We administered, orally, tRA or VA mixed with 10% of tRA (referred to as VARA) to female mice starting from 6 weeks of age. At this age, the mice do not exhibit overt clinical signs of lupus. However, the immunogenic environment preceding disease onset has been established as evidenced by an increase of total IgM/IgG in the plasma and expansion of lymphocytes and dendritic cells in secondary lymphoid organs. After 8 weeks of tRA, but not VARA treatment, significantly higher pathological scores in the skin, brain and lung were observed. These were accompanied by a marked increase in B-cell responses that included autoantibody production and enhanced expression of plasma cell-promoting cytokines. Paradoxically, the number of lymphocytes in the mesenteric lymph node decreased with tRA that led to significantly reduced lymphadenopathy. In addition, tRA differentially affected renal pathology, increasing leukocyte infiltration of renal tubulointerstitium while restoring the size of glomeruli in the kidney cortex. In contrast, minimal induction of inflammation with tRA in the absence of an immunogenic environment in the control mice was observed. Altogether, our results suggest that under a predisposed immunogenic environment in autoimmune lupus, tRA may decrease inflammation in some organs while generating more severe disease in others.