Browsing by Author "Ceci, Alessandro"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- A comparative analysis exposes an amplification delay distinctive to SARS-CoV-2 Omicron variants of clinical and public health relevanceBrown, Katherine L.; Ceci, Alessandro; Roby, Clinton; Briggs, Russell B.; Ziolo, D.; Korba, R.; Mejia, R.; Kelly, S. T.; Toney, D.; Friedlander, Michael J.; Finkielstein, Carla V. (Taylor & Francis, 2023)Mutations in the SARS-CoV-2 genome may negatively impact a diagnostic test, have no effect, or turn into an opportunity for rapid molecular screening of variants. Using an in-house Emergency Use Authorized RT-qPCR-based COVID-19 diagnostic assay, we combined sequence surveillance of viral variants and computed PCR efficiencies for mismatched templates. We found no significant mismatches for the N, E, and S set of assay primers until the Omicron variant emerged in late November 2021. We found a single mismatch between the Omicron sequence and one of our assay's primers caused a > 4 cycle delay during amplification without impacting overall assay performance. Starting in December 2021, clinical specimens received for COVID-19 diagnostic testing that generated a Cq delay greater than 4 cycles were sequenced and confirmed as Omicron. Clinical samples without a Cq delay were largely confirmed as the Delta variant. The primer-template mismatch was then used as a rapid surrogate marker for Omicron. Primers that correctly identified Omicron were designed and tested, which prepared us for the emergence of future variants with novel mismatches to our diagnostic assay's primers. Our experience demonstrates the importance of monitoring sequences, the need for predicting the impact of mismatches, their value as a surrogate marker, and the relevance of adapting one's molecular diagnostic test for evolving pathogens.
- Development and implementation of a scalable and versatile test for COVID-19 diagnostics in rural communitiesCeci, Alessandro; Muñoz-Ballester, Carmen; Tegge, Allison N.; Brown, Katherine L.; Umans, Robyn A.; Michel, F. Marc; Patel, Dipankumar; Tewari, Bhanu P.; Martin, James E.; Alcoreza, Oscar Jr.; Maynard, Thomas M.; Martinez-Martinez, Daniel; Bordwine, Paige; Bissell, Noelle; Friedlander, Michael J.; Sontheimer, Harald; Finkielstein, Carla V. (Nature Publishing Group, 2021-07-20)Rapid and widespread testing of severe acute respiratory coronavirus 2 (SARS-CoV-2) is essential for an effective public health response aimed at containing and mitigating the coronavirus disease 2019 (COVID-19) pandemic. Successful health policy implementation relies on early identification of infected individuals and extensive contact tracing. However, rural communities, where resources for testing are sparse or simply absent, face distinctive challenges to achieving this success. Accordingly, we report the development of an academic, public land grant University laboratory-based detection assay for the identification of SARS-CoV-2 in samples from various clinical specimens that can be readily deployed in areas where access to testing is limited. The test, which is a quantitative reverse transcription polymerase chain reaction (RT-qPCR)-based procedure, was validated on samples provided by the state laboratory and submitted for FDA Emergency Use Authorization. Our test exhibits comparable sensitivity and exceeds specificity and inclusivity values compared to other molecular assays. Additionally, this test can be re-configured to meet supply chain shortages, modified for scale up demands, and is amenable to several clinical specimens. Test development also involved 3D engineering critical supplies and formulating a stable collection media that allowed samples to be transported for hours over a dispersed rural region without the need for a cold-chain. These two elements that were critical when shortages impacted testing and when personnel needed to reach areas that were geographically isolated from the testing center. Overall, using a robust, easy-to-adapt methodology, we show that an academic laboratory can supplement COVID-19 testing needs and help local health departments assess and manage outbreaks. This additional testing capacity is particularly germane for smaller cities and rural regions that would otherwise be unable to meet the testing demand.
- Subsewershed SARS-CoV-2 Wastewater Surveillance and COVID-19 Epidemiology Using Building-Specific Occupancy and Case DataCohen, Alasdair; Maile-Moskowitz, Ayella; Grubb, Christopher; Gonzalez, Raul A.; Ceci, Alessandro; Darling, Amanda; Hungerford, Laura L.; Fricker, Ronald D. Jr.; Finkielstein, Carla V.; Pruden, Amy; Vikesland, Peter J. (American Chemical Society, 2022-05-01)To evaluate the use of wastewater-based surveillance and epidemiology to monitor and predict SARS-CoV-2 virus trends, over the 2020-2021 academic year we collected wastewater samples twice weekly from 17 manholes across Virginia Tech's main campus. We used data from external door swipe card readers and student isolation/quarantine status to estimate building-specific occupancy and COVID-19 case counts at a daily resolution. After analyzing 673 wastewater samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR), we reanalyzed 329 samples from isolation and nonisolation dormitories and the campus sewage outflow using reverse transcription digital droplet polymerase chain reaction (RT-ddPCR). Population-adjusted viral copy means from isolation dormitory wastewater were 48% and 66% higher than unadjusted viral copy means for N and E genes (1846/100 mL to 2733/100 mL/100 people and 2312/100 mL to 3828/100 mL/100 people, respectively; n = 46). Prespecified analyses with random-effects Poisson regression and dormitory/cluster-robust standard errors showed that the detection of N and E genes were associated with increases of 85% and 99% in the likelihood of COVID-19 cases 8 days later (incident-rate ratio (IRR) = 1.845, p = 0.013 and IRR = 1.994, p = 0.007, respectively; n = 215), and one-log increases in swipe card normalized viral copies (copies/100 mL/100 people) for N and E were associated with increases of 21% and 27% in the likelihood of observing COVID-19 cases 8 days following sample collection (IRR = 1.206, p < 0.001, n = 211 for N; IRR = 1.265, p < 0.001, n = 211 for E). One-log increases in swipe normalized copies were also associated with 40% and 43% increases in the likelihood of observing COVID-19 cases 5 days after sample collection (IRR = 1.403, p = 0.002, n = 212 for N; IRR = 1.426, p < 0.001, n = 212 for E). Our findings highlight the use of building-specific occupancy data and add to the evidence for the potential of wastewater-based epidemiology to predict COVID-19 trends at subsewershed scales.
- Vaccine Effectiveness During an Outbreak of COVID-19 Alpha Variant (B.1.1.7) in a Men’s Correctional Facility in Rural VirginiaSilverman, Rachel A.; Ceci, Alessandro; Cohen, Alasdair; Helmick, Meagan; Short, Erica; Bordwine, Paige; Friedlander, Michael J.; Finkielstein, Carla V. (2022-07)In April 2021, a COVID-19 outbreak occurred at a correctional facility in rural Virginia, USA. Eighty-four infections were identified among 854 incarcerated persons by facilitywide testing with reverse transcription quantitative PCR (qRT-PCR). We used whole-genome sequencing to link all infections to 2 employees infected with the B.1.1.7α (UK) variant. The relative risk comparing unvaccinated to fully vaccinated persons (mRNA-1273 [Moderna, https:// www.moderna.com]) was 7.8 (95% CI 4.8–12.7), corresponding to a vaccine effectiveness of 87.1% (95% CI 79.0%–92.1%). Average qRT-PCR cycle threshold values were lower, suggesting higher viral loads, among unvaccinated infected than vaccinated cases for the N, E, and S genes. Vaccination was highly effective at preventing SARS-CoV-2 infection in this high-risk setting. This approach can be applied to similar settings to estimate vaccine effectiveness as variants emerge to guide public health strategies during the ongoing pandemic.
- Vaccine Effectiveness during Outbreak of COVID-19 Alpha (B.1.1.7) Variant in Men’s Correctional Facility, United StatesSilverman, Rachel A.; Ceci, Alessandro; Cohen, Alasdair; Helmick, Meagan; Short, Erica; Bordwine, Paige; Friedlander, Michael J.; Finkielstein, Carla V. (Centers for Disease Control and Prevention, 2022-07)In April 2021, a COVID-19 outbreak occurred at a correctional facility in rural Virginia, USA. Eighty-four infections were identified among 854 incarcerated persons by facilitywide testing with reverse transcription quantitative PCR (qRT-PCR). We used whole-genome sequencing to link all infections to 2 employees infected with the B.1.1.7α (UK) variant. The relative risk comparing unvaccinated to fully vaccinated persons (mRNA-1273 [Moderna, https:// www.moderna.com]) was 7.8 (95% CI 4.8–12.7), corresponding to a vaccine effectiveness of 87.1% (95% CI 79.0%–92.1%). Average qRT-PCR cycle threshold values were lower, suggesting higher viral loads, among unvaccinated infected than vaccinated cases for the N, E, and S genes. Vaccination was highly effective at preventing SARS-CoV-2 infection in this high-risk setting. This approach can be applied to similar settings to estimate vaccine effectiveness as variants emerge to guide public health strategies during the ongoing pandemic.
- Widespread exposure to SARS-CoV-2 in wildlife communitiesGoldberg, Amanda R.; Langwig, Kate E.; Brown, Katherine L.; Marano, Jeffrey M.; Rai, Pallavi; King, Kelsie M.; Sharp, Amanda K.; Ceci, Alessandro; Kailing, Christopher D.; Kailing, Macy J.; Briggs, Russell; Urbano, Matthew G.; Roby, Clinton; Brown, Anne M.; Weger-Lucarelli, James; Finkielstein, Carla V.; Hoyt, Joseph R. (Springer, 2024-07-29)Pervasive SARS-CoV-2 infections in humans have led to multiple transmission events to animals. While SARS-CoV-2 has a potential broad wildlife host range, most documented infections have been in captive animals and a single wildlife species, the white-tailed deer. The full extent of SARS-CoV-2 exposure among wildlife communities and the factors that influence wildlife transmission risk remain unknown. We sampled 23 species of wildlife for SARS-CoV-2 and examined the effects of urbanization and human use on seropositivity. Here, we document positive detections of SARS-CoV-2 RNA in six species, including the deer mouse, Virginia opossum, raccoon, groundhog, Eastern cottontail, and Eastern red bat between May 2022–September 2023 across Virginia and Washington, D.C., USA. In addition, we found that sites with high human activity had three times higher seroprevalence than low human-use areas. We obtained SARS-CoV-2 genomic sequences from nine individuals of six species which were assigned to seven Pango lineages of the Omicron variant. The close match to variants circulating in humans at the time suggests at least seven recent human-to-animal transmission events. Our data support that exposure to SARS-CoV-2 has been widespread in wildlife communities and suggests that areas with high human activity may serve as points of contact for cross-species transmission.