Browsing by Author "Chakraborty, Amrita"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Analysis of the Electrical ReRAM Device Degradation Induced by Thermal Cross-TalkAl-Mamun, Mohammad; Chakraborty, Amrita; Orlowski, Marius (Wiley, 2023-02-14)A switching of resistive memory cells leads to a local accumulation of Joules heat in the device. In resistive RAM (ReRAM) arrays, the heat generated in one cell spreads via common electrode metal lines to the neighboring cells and may cause their performance degradation. The performance degradation results in reduced number of switching cycles and, in extreme cases, even in a loss of a bit, caused by the rupture of the nanofilament. The authors propose a thermal analysis of the thermal cross-talk, describe its impact on cells' electric performance, and identify three major mechanisms for the ReRAM reliability: (i) thermal conductivity, (ii) the specific heat capacity, and (iii) geometry of the electrodes. Several ReRAM arrays are manufactured to vary thermal conductivity, specific heat and geometry of the electrodes by depositing eight different inert electrodes: Pt(50 nm)/Ti(30 nm), Ru(50 nm)/Ti(30 nm), Co(50 nm)/Ti(30 nm), Pt(50 nm/Cu(100 nm)/Ti(30 nm), Pt(50 nm)/ Cu(200 nm)/Ti(30 nm), Ru(50 nm/Cr(30 nm), Ru(50 nm)/Ti(50 nm), and Rh(50 nm)/Cr(30 nm). The experimentally found differences of the degradation of electric performance of the array cells performed under identical circumstances can be correctly predicted by the proposed thermal analysis using the material properties and geometry parameters of the electrodes.
- Electrical characterization of RuOx/n-GaN Schottky diodes formed by oxidizing ruthenium thin-films in normal laboratory airAllen, Noah P.; Ciarkowski, Timothy; Carlson, Eric; Chakraborty, Amrita; Guido, Louis J. (2020-01)Schottky diodes were formed by oxidizing Ru thin films deposited on n-type GaN at 400, 500, and 600 degrees C in normal laboratory air, and their electrical behavior was compared to that of a Ru/n-GaN reference device. The GaN epitaxial layers were grown via metalorganic chemical vapor deposition. The ruthenium films were deposited by electron beam evaporation. The Schottky barriers were characterized via current vs voltage (IV) and deep-level transient spectroscopy (DLTS) measurements between 70 and 400 K. The temperature dependent forward bias IV characteristics were fit, and the extracted temperature dependence of the effective barrier height for each device was shown to be caused by inhomogeneity at the metal/semiconductor interface. It was found that barrier inhomogeneity could be well described by a modified log-normal distribution. In reverse bias, it was shown that the low-energy tail of the barrier distribution is an important factor in determining leakage current. Favorable results occur for diodes oxidized at 400 and 500 degrees C, but raising the oxidation temperature to 600 degrees C results in a drastic increase in leakage current. DLTS measurements reveal one electron trap at E-C - 0.57 eV in each of the samples. It was found that the concentration of this 0.57 eV trap increases substantially at 600 degrees C and that trap-assisted tunneling likely contributes an additional pathway for reverse leakage current. (c) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
- Impact of Thermal Effects and Other Material Properties on the Performance and Electro-Thermal Reliability of Resistive Random Access Memory ArraysChakraborty, Amrita (Virginia Tech, 2023-12-21)As the semiconductor industry grapples with escalating scaling challenges associated with the floating gate MOSFET, alternative memory technologies like Resistive Random Access Memory (ReRAM) are gaining prominence in the scientific community. Boasting a straightforward device structure, ease of fabrication, and compatibility with CMOS (Complementary Metal-oxide Semiconductor) Back-end of Line (BEOL), ReRAM stands as a leading candi- date for the next generation of non-volatile memory (NVM). ReRAM devices feature nanoionics-based filamentary switching, outperforming flash memory in terms of power consumption, scalability, retention, ON/OFF ratio, and endurance. Furthermore, integrating ReRAMs within the CMOS BEOL/low-k Cu interconnect system not only reduces latency between the connectivity constraints of logic and memory modules but also minimizes the chip footprint. However, investigations have revealed a significant concern surrounding ReRAMs—specifically, their electro-thermal reliability. This research provides evidence highlighting the critical influence of material properties, deposition effects, and thermal transport on the device's performance and reliability. Various material systems have undergone in this work scrutiny to comprehend the impact of intrinsic material properties such as thermal conductivity, specific heat capacity, thermal diffusivity, and deposition effects like surface roughness on the electroforming voltages of ReRAM devices. The reference device structure considered in this work is Cu/TaOx/Pt, which has been compared with alternative configurations involving metals like Ru and Co as potential substitutes for Pt. Additionally, a new vehicle has been introduced to quantify cell degradation resulting from thermal cross-talk in crossbar Resistive Random Access Memory (ReRAM) arrays. Furthermore, a novel methodology has been presented to predict cell degradation due to remote heating, taking into account the cell's location, the material properties of the device, and geometry of its electrodes. The experimental results presented in this study showcase filament rupture caused by remote heating, along with spontaneous filament restoration ensuing from the subsequent cooling of the ReRAM cell.