Browsing by Author "Chan, Kevin Ki Fai"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Factors influencing arbovirus transmission: vector competence and the effects of virus infection on repellent response, oxidative stress, and glutathione-S-transferase activityChan, Kevin Ki Fai (Virginia Tech, 2020-01-31)Zika (ZIKV), La Crosse (LACV), and Cache Valley (CVV) viruses are mosquito-vectored diseases that cause significant morbidity and mortality in humans and animals. Transmission of these viruses are dependent on numerous factors including vector competence and the effects of mosquito-virus interactions. We conducted vector competence studies of local Aedes and Culex mosquitoes for ZIKV and CVV, and found that all Aedes mosquitoes were competent for CVV and only Aedes albopictus and Aedes japonicus were competent for ZIKV. Vector competence for CVV was dose-dependent, where mosquitoes orally infected with high titers developed higher transmission rates. We also found that vector competence for ZIKV was limited by midgut and salivary gland barriers. Second, we looked at the effects of LACV and ZIKV infection on repellent response in Aedes mosquitoes and found that infected mosquitoes were refractory to low concentrations of DEET, picaridin, and PMD. Increasing concentrations of the repellents to ≥10% was able to increase percent protection (%p) against infected and uninfected mosquitoes. Lastly, we determined the effects of ZIKV and LACV infection on oxidative stress and glutathione-S-transferase (GST) activity in Aedes albopictus. Virus infection had no effect on oxidative stress, but GST activity was significantly different for mosquitoes 3-days post-exposure. We found that oxidative stress levels and GST activity had an inverse relationship for infected and uninfected mosquitoes, where oxidative stress decreased and GST activity increased over the 10-day test period. This indicates that GSTs may aid in controlling byproducts of oxidative stress. The results from this entire study identified competent vectors for emerging arboviruses and demonstrated the behavioral and physiological effects of virus infection in the mosquito vector.