Browsing by Author "Charkhesht, Ali"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- High-Precision Megahertz-to-Terahertz Dielectric Spectroscopy of Protein Collective Motions and Hydration DynamicsCharkhesht, Ali; Regmi, Chola K.; Mitchell-Koch, Katie R.; Cheng, Shengfeng; Vinh, Nguyen Q. (American Chemical Society, 2018-06-21)The low-frequency collective vibrational modes in proteins as well as the protein-water interface have been suggested as dominant factors controlling the efficiency of biochemical reactions and biological energy transport. It is thus crucial to uncover the mystery of the hydration structure and dynamics as well as their coupling to collective motions of proteins in aqueous solutions. Here, we report dielectric properties of aqueous bovine serum albumin protein solutions as a model system using an extremely sensitive dielectric spectrometer with frequencies spanning from megahertz to terahertz. The dielectric relaxation spectra reveal several polarization mechanisms at the molecular level with different time constants and dielectric strengths, reflecting the complexity of protein-water interactions. Combining the effective-medium approximation and molecular dynamics simulations, we have determined collective vibrational modes at terahertz frequencies and the number of water molecules in the tightly bound and loosely bound hydration layers. High-precision measurements of the number of hydration water molecules indicate that the dynamical influence of proteins extends beyond the first solvation layer, to around 7 Å distance from the protein surface, with the largest slowdown arising from water molecules directly hydrogen-bonded to the protein. Our results reveal critical information of protein dynamics and protein-water interfaces, which determine biochemical functions and reactivity of proteins.
- Probing Collective Motions and Hydration Dynamics of Biomolecules by a Wide Range Dielectric SpectroscopyCharkhesht, Ali (Virginia Tech, 2019-06-25)Studying dynamics of proteins in their biological milieu such as water is interesting because of their strong absorption in the terahertz range that contain information on their global and sub-global collective vibrational modes (conformational dynamics) and global dynamical correlations among solvent water molecules and proteins. In addition, water molecules dynamics within protein solvation layers play a major role in enzyme activity. However, due to the strong absorption of water in the gigahertz-to-terahertz frequencies, it is challenging to study the properties of the solvent dynamics as well as the conformational changes of protein in water. In response, we have developed a highly sensitive megahertz-to-terahertz dielectric spectroscopy system to probe the hydration shells as well as large-scale dynamics of these biomolecules. Thereby, we have deduced the conformation flexibility of proteins and compare the hydration dynamics around proteins to understand the effects of surface-mediated solvent dynamics, relationships among different measures of interfacial solvent dynamics, and protein-mediated solvent dynamics based on the complex dielectric response from 50 MHz up to 2 THz by using the system we developed. Comparing these assets of various proteins in different classes helps us shed light on the macromolecular dynamics in a biologically relevant water environment.