Browsing by Author "Chen, Frank"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Automatic Recognition and Analysis of Balance Activity in Community-Dwelling Older Adults: Algorithm ValidationHsu, Yu-Cheng; Wang, Hailiang; Zhao, Yang; Chen, Frank; Tsui, Kwok-Leung (JMIR Publications, 2021-12-20)Background: Clinical mobility and balance assessments identify older adults who have a high risk of falls in clinics. In the past two decades, sensors have been a popular supplement to mobility and balance assessment to provide quantitative information and a cost-effective solution in the community environment. Nonetheless, the current sensor-based balance assessment relies on manual observation or motion-specific features to identify motions of research interest. Objective: The objective of this study was to develop an automatic motion data analytics framework using signal data collected from an inertial sensor for balance activity analysis in community-dwelling older adults. Methods: In total, 59 community-dwelling older adults (19 males and 40 females; mean age = 81.86 years, SD 6.95 years) were recruited in this study. Data were collected using a body-worn inertial measurement unit (including an accelerometer and a gyroscope) at the L4 vertebra of each individual. After data preprocessing and motion detection via a convolutional long short-term memory (LSTM) neural network, a one-class support vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighborhood (k-NN) were adopted to classify high-risk individuals. Results: The framework developed in this study yielded mean accuracies of 87%, 86%, and 89% in detecting sit-to-stand, turning 360 degrees, and stand-to-sit motions, respectively. The balance assessment classification showed accuracies of 90%, 92%, and 86% in classifying abnormal sit-to-stand, turning 360 degrees, and stand-to-sit motions, respectively, using Tinetti Performance Oriented Mobility Assessment-Balance (POMA-B) criteria by the one-class SVM and k-NN. Conclusions: The sensor-based approach presented in this study provided a time-effective manner with less human efforts to identify and preprocess the inertial signal and thus enabled an efficient balance assessment tool for medical professionals. In the long run, the approach may offer a flexible solution to relieve the community's burden of continuous health monitoring.
- Influencing factors of Barthel index scores among the community-dwelling elderly in Hong Kong: a random intercept modelPan, Hao; Zhao, Yang; Wang, Hailiang; Li, Xinyue; Leung, Eman; Chen, Frank; Cabrera, Javier; Tsui, Kwok-Leung (2021-09-06)Background Barthel Index (BI) is one of the most widely utilized tools for assessing functional independence in activities of daily living. Most existing BI studies used populations with specific diseases (e.g., Alzheimer’s and stroke) to test prognostic factors of BI scores; however, the generalization of these findings was limited when the target populations varied. Objectives The aim of the present study was to utilize electronic health records (EHRs) and data mining techniques to develop a generic procedure for identifying prognostic factors that influence BI score changes among community-dwelling elderly. Methods Longitudinal data were collected from 113 older adults (81 females; mean age = 84 years, SD = 6.9 years) in Hong Kong elderly care centers. Visualization technologies were used to align annual BI scores with individual EHRs chronologically. Linear mixed-effects (LME) regression was conducted to model longitudinal BI scores based on socio-demographics, disease conditions, and features extracted from EHRs. Results The visualization presented a decline in BI scores changed by time and health history events. The LME model yielded a conditional R2 of 84%, a marginal R2 of 75%, and a Cohen’s f2 of 0.68 in the design of random intercepts for individual heterogeneity. Changes in BI scores were significantly influenced by a set of socio-demographics (i.e., sex, education, living arrangement, and hobbies), disease conditions (i.e., dementia and diabetes mellitus), and EHRs features (i.e., event counts in allergies, diagnoses, accidents, wounds, hospital admissions, injections, etc.). Conclusions The proposed visualization approach and the LME model estimation can help to trace older adults’ BI score changes and identify the influencing factors. The constructed long-term surveillance system provides reference data in clinical practice and help healthcare providers manage the time, cost, data and human resources in community-dwelling settings.