Browsing by Author "Chen, Yimin"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Building trustworthy machine learning systems in adversarial environmentsWang, Ning (Virginia Tech, 2023-05-26)Modern AI systems, particularly with the rise of big data and deep learning in the last decade, have greatly improved our daily life and at the same time created a long list of controversies. AI systems are often subject to malicious and stealthy subversion that jeopardizes their efficacy. Many of these issues stem from the data-driven nature of machine learning. While big data and deep models significantly boost the accuracy of machine learning models, they also create opportunities for adversaries to tamper with models or extract sensitive data. Malicious data providers can compromise machine learning systems by supplying false data and intermediate computation results. Even a well-trained model can be deceived to misbehave by an adversary who provides carefully designed inputs. Furthermore, curious parties can derive sensitive information of the training data by interacting with a machine-learning model. These adversarial scenarios, known as poisoning attack, adversarial example attack, and inference attack, have demonstrated that security, privacy, and robustness have become more important than ever for AI to gain wider adoption and societal trust. To address these problems, we proposed the following solutions: (1) FLARE, which detects and mitigates stealthy poisoning attacks by leveraging latent space representations; (2) MANDA, which detects adversarial examples by utilizing evaluations from diverse sources, i.e, model-based prediction and data-based evaluation; (3) FeCo which enhances the robustness of machine learning-based network intrusion detection systems by introducing a novel representation learning method; and (4) DP-FedMeta, which preserves data privacy and improves the privacy-accuracy trade-off in machine learning systems through a novel adaptive clipping mechanism.
- FLARE: Defending Federated Learning against Model Poisoning Attacks via Latent Space RepresentationsWang, Ning; Xiao, Yang; Chen, Yimin; Hu, Yang; Lou, Wenjing; Hou, Y. Thomas (ACM, 2022-05-30)Federated learning (FL) has been shown vulnerable to a new class of adversarial attacks, known as model poisoning attacks (MPA), where one or more malicious clients try to poison the global model by sending carefully crafted local model updates to the central parameter server. Existing defenses that have been fixated on analyzing model parameters show limited effectiveness in detecting such carefully crafted poisonous models. In this work, we propose FLARE, a robust model aggregation mechanism for FL, which is resilient against state-of-the-art MPAs. Instead of solely depending on model parameters, FLARE leverages the penultimate layer representations (PLRs) of the model for characterizing the adversarial influence on each local model update. PLRs demonstrate a better capability to differentiate malicious models from benign ones than model parameter-based solutions. We further propose a trust evaluation method that estimates a trust score for each model update based on pairwise PLR discrepancies among all model updates. Under the assumption that honest clients make up the majority, FLARE assigns a trust score to each model update in a way that those far from the benign cluster are assigned low scores. FLARE then aggregates the model updates weighted by their trust scores and finally updates the global model. Extensive experimental results demonstrate the effectiveness of FLARE in defending FL against various MPAs, including semantic backdoor attacks, trojan backdoor attacks, and untargeted attacks, and safeguarding the accuracy of FL.
- On Transferability of Adversarial Examples on Machine-Learning-Based Malware ClassifiersHu, Yang (Virginia Tech, 2022-05-12)The use of Machine Learning for malware detection is essential to counter the massive growth in malware types compared with the traditional signature-based detection system. However, machine learning models could also be extremely vulnerable and sensible to transferable adversarial example (AE) attacks. The transfer AE attack does not require extra information from the victim model such as gradient information. Researchers explore mainly 2 lines of transfer-based adversarial example attacks: ensemble models and ensemble samples. \\ Although comprehensive innovations and progress have been achieved in transfer AE attacks, few works have investigated how these techniques perform in malware data. Besides, generating adversarial examples on an android APK file is not as easy and convenient as it is on image data since the generated AE of malware should also remain its functionality and executability after perturbation. Therefore, it is urgent to validate whether previous methodologies could still have their effect on malware considering the differences compared to image data. \\ In this thesis, we first have a thorough literature review for the AE attacks on malware data and general transfer AE attacks. Then we design our algorithm for the transfer AE attack. We formulate the optimization problem based on the intuition that the contribution evenness of features towards the final prediction result is highly correlated to the AE transferability. We then solve the optimization problem by gradient descent and evaluate it through extensive experiments. Implementing and experimenting with the state-of-the-art AE algorithms and transferability enhancement techniques, we analyze and summarize the weaknesses and strengths of each method.
- Squeezing More Utility via Adaptive Clipping on Differentially Private Gradients in Federated Meta-LearningWang, Ning; Xiao, Yang; Chen, Yimin; Zhang, Ning; Lou, Wenjing; Hou, Y. Thomas (ACM, 2022-12-05)Federated meta-learning has emerged as a promising AI framework for today’s mobile computing scenes involving distributed clients. It enables collaborative model training using the data located at distributed mobile clients and accommodates clients that need fast model customization with limited new data. However, federated meta-learning solutions are susceptible to inference-based privacy attacks since the global model encoded with clients’ training data is open to all clients and the central server. Meanwhile, differential privacy (DP) has been widely used as a countermeasure against privacy inference attacks in federated learning. The adoption of DP in federated meta-learning is complicated by the model accuracy-privacy trade-off and the model hierarchy attributed to the meta-learning component. In this paper, we introduce DP-FedMeta, a new differentially private federated meta-learning architecture that addresses such data privacy challenges. DP-FedMeta features an adaptive gradient clipping method and a one-pass meta-training process to improve the model utility-privacy trade-off. At the core of DPFedMeta are two DP mechanisms, namely DP-AGR and DP-AGRLR, to provide two notions of privacy protection for the hierarchical models. Extensive experiments in an emulated federated metalearning scenario on well-known datasets (Omniglot, CIFAR-FS, and Mini-ImageNet) demonstrate that DP-FedMeta accomplishes better privacy protection while maintaining comparable model accuracy compared to the state-of-the-art solution that directly applies DP-based meta-learning to the federated setting.