Browsing by Author "Cheng, S."
Now showing 1 - 15 of 15
Results Per Page
Sort Options
- Capillary adhesion at the nanometer scaleCheng, S.; Robbins, M. O. (2014-06)Molecular dynamics simulations are used to study the capillary adhesion from a nonvolatile liquid meniscus between a spherical tip and a flat substrate. The atomic structure of the tip, the tip radius, the contact angles of the liquid on the two surfaces, and the volume of the liquid bridge are varied. The capillary force between the tip and substrate is calculated as a function of their separation h. The force agrees with continuum predictions based on macroscopic theory for h down to ∼5 to 10 nm. At smaller h, the force tends to be less attractive than predicted and has strong oscillations. This oscillatory component of the capillary force is completely missed in the macroscopic theory, which only includes contributions from the surface tension around the circumference of the meniscus and the pressure difference over the cross section of the meniscus. The oscillation is found to be due to molecular layering of the liquid confined in the narrow gap between the tip and substrate. This effect is most pronounced for large tip radii and/or smooth surfaces. The other two components considered by the macroscopic theory are also identified. The surface tension term, as well as the meniscus shape, is accurately described by the macroscopic theory for h down to ∼1 nm, but the capillary pressure term is always more positive than the corresponding continuum result. This shift in the capillary pressure reduces the average adhesion by a factor as large as 2 from its continuum value and is found to be due to an anisotropy in the pressure tensor. The component in the plane of the substrate is consistent with the capillary pressure predicted by the macroscopic theory (i.e., the Young-Laplace equation), but the normal pressure that determines the capillary force is always more positive than the continuum counterpart.
- Contact and friction of nanoasperities: effects of adsorbed monolayersCheng, S.; Luan, B.; Robbins, M. O. (2010-01)Molecular dynamics simulations are used to study contact between a rigid, nonadhesive, and spherical tip with radius of order 30 nm and a flat elastic substrate covered with a fluid monolayer of adsorbed chain molecules. Previous studies of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip constructed from discrete atoms lead to significant deviations from continuum theory and dramatic variability in friction forces. Introducing an adsorbed monolayer leads to larger deviations from continuum theory but decreases the variations between tips with different atomic structure. Although the film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except for certain tips at high loads. Measures of the contact area based on the moments or outer limits of the pressure distribution and on counting contacting atoms are compared. The number of tip atoms making contact during a time interval Deltat grows as a power of Deltat when the film is present and as the logarithm of Deltat for bare surfaces. Friction is measured by displacing the tip at a constant velocity or pulling the tip with a spring. Both static and kinetic friction rise linearly with load at small loads. Transitions in the state of the film lead to nonlinear behavior at large loads. The friction is less clearly correlated with contact area than load.
- Coupled optical interface modes in a Thue-Morse dielectric superlatticeCheng, S.; Jin, G.; Peng, R.; Hu, A. (2001-10)
- Defining Contact at the Atomic ScaleCheng, S.; Robbins, M. O. (2010-09)
- Dispersing Nanoparticles in a Polymer Film via Solvent EvaporationCheng, S.; Grest, G. S. (2016-06-21)
- Evaporation of Lennard-Jones fluidsCheng, S.; Lechman, J. B.; Plimpton, S. J.; Grest, G. S. (2011-06-14)Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.
- Extended nature of coupled optical interface modes in Thue-Morse dielectric superlatticesCheng, S.; Jin, G. (2003-04)
- Linking microstructural evolution and macro-scale friction behavior in metalsArgibay, N.; Chandross, M.; Cheng, S.; Michael, J. R. (Springer, 2017-03-01)
- Mechanical response of a self-avoiding membrane: fold collisions and the birth of conical singularitiesMellado, P.; Cheng, S.; Concha, A. (2011-03)An elastic membrane that is forced to reside in a container smaller than its natural size will deform and upon further volume reduction eventually crumple. The crumpled state is characterized by the localization of energy in a complex network of highly deformed crescent-like regions joined by line ridges. In this article we study through a combination of experiments, numerical simulations, and analytic approaches the emergence of localized regions of high stretching when a self-avoiding membrane is subject to a severe geometrical constraint. Based on our experimental observations and numerical results we suggest that at moderate packing fraction interlayer interactions produce a response equivalent to that of a thicker membrane that has the shape of the deformed one. We find that new conical dislocations, coined satellite d-cones, appear as the deformed membrane further compactifies. When these satellite d-cones are born, a substantial relaxation of the mechanical response of the membrane is observed. Evidence is found that friction plays a key role in stabilizing the folded structures.
- Molecular dynamics simulations of evaporation-induced nanoparticle assemblyCheng, S.; Grest, G. S. (2013-02-14)While evaporating solvent is a widely used technique to assemble nano-sized objects into desired superstructures, there has been limited work on how the assembled structures are affected by the physical aspects of the process. We present large scale molecular dynamics simulations of the evaporation-induced assembly of nanoparticles suspended in a liquid that evaporates in a controlled fashion. The quality of the nanoparticle crystal formed just below the liquid/vapor interface is found to be better at relatively slower evaporation rates, as less defects and grain boundaries appear. This trend is understood as the result of the competition between the accumulation and diffusion times of nanoparticles at the liquid/vapor interface. When the former is smaller, nanoparticles are deposited so fast at the interface that they do not have sufficient time to arrange through diffusion, which leads to the prevalence of defects and grain boundaries. Our results have important implications in understanding assembly of nanoparticles and colloids in non-equilibrium liquid environments.
- Nanocapillary Adhesion between Parallel PlatesCheng, S.; Robbins, M. O. (2016-08-09)Molecular dynamics simulations are used to study capillary adhesion from a nanometer scale liquid bridge between two parallel flat solid surfaces. The capillary force, Fcap, and the meniscus shape of the bridge are computed as the separation between the solid surfaces, h, is varied. Macroscopic theory predicts the meniscus shape and the contribution of liquid/vapor interfacial tension to Fcap quite accurately for separations as small as two or three molecular diameters (1-2 nm). However, the total capillary force differs in sign and magnitude from macroscopic theory for h ≲ 5 nm (8-10 diameters) because of molecular layering that is not included in macroscopic theory. For these small separations, the pressure tensor in the fluid becomes anisotropic. The components in the plane of the surface vary smoothly and are consistent with theory based on the macroscopic surface tension. Capillary adhesion is affected by only the perpendicular component, which has strong oscillations as the molecular layering changes.
- Self-assembly of artificial microtubulesCheng, S.; Aggarwal, A.; Stevens, M. J. (2012)
- Self-assembly of chiral tubulesCheng, S.; Stevens, M. J. (2014)
- Structure and diffusion of nanoparticle monolayers floating at liquid/vapor interfaces: a molecular dynamics studyCheng, S.; Grest, G. S. (2012-06-07)Large-scale molecular dynamics simulations are used to simulate a layer of nanoparticles floating on the surface of a liquid. Both a low viscosity liquid, represented by Lennard-Jones monomers, and a high viscosity liquid, represented by linear homopolymers, are studied. The organization and diffusion of the nanoparticles are analyzed as the nanoparticle density and the contact angle between the nanoparticles and liquid are varied. When the interaction between the nanoparticles and liquid is reduced the contact angle increases and the nanoparticles ride higher on the liquid surface, which enables them to diffuse faster. In this case the short-range order is also reduced as seen in the pair correlation function. For the polymeric liquids, the out-of-layer fluctuation is suppressed and the short-range order is slightly enhanced. However, the diffusion becomes much slower and the mean square displacement even shows sub-linear time dependence at large times. The relation between diffusion coefficient and viscosity is found to deviate from that in bulk diffusion. Results are compared to simulations of the identical nanoparticles in 2-dimensions.
- Trace map and eigenstates of a Thue-Morse chain in a general modelCheng, S.; Jin, G. (2002-03)