Browsing by Author "Chevone, Boris I."
Now showing 1 - 20 of 24
Results Per Page
Sort Options
- An analysis of the potential effects of air pollutants emitted during coal combustion on yellow poplar and loblolly pine and influences on mycorrhizal associations of loblolly pineMahoney, Matthew J. (Virginia Polytechnic Institute and State University, 1982)Yellow poplar (Liriodendron tulipifera L.) and loblolly pine (Pinus taeda L.), families 2-8 and 540, seedlings were fumigated with 0.07 ppm ozone, 0.06 ppm sulfur dioxide 0.07 ppm ozone + 0.06 ppm sulfur dioxide, 0.06 ppm sulfur dioxide + 0.10 ppm nitrogen dioxide and 0.07 ppm ozone + 0.06 ppm sulfur dioxide + 0.10 ppm nitrogen dioxide for 35 consecutive days, 6 hr/day. Control seedlings received charcoal-filtered air. Ozone or sulfur dioxide did not significantly affect height growth or dry weight of yellow poplar seedlings. All other treatments significantly reduced height growth and dry weight after 2 weeks of fumigation. Height growth effects of loblolly pine families were not repeatable from one year to the next in replicate experiments and weekly growth trends in the two experiments were reversed. Environmental factors related to time of year were thought to be involved with this growth trend reversal. Root dry weight was found to be a more sensitive indicator of air pollution stress than either shoot dry weight, height growth or visible symptoms. Loblolly families 2-8 and 540 were not found to be differentially sensitive to pollutant treatments. Loblolly pine seedlings, nonmycorrhizal and mycorrhizal with Pisolithus tinctorius, were fumigated with 0.07 ppm ozone and 0.06 ppm sulfur dioxide singly and in combination, 6 hr/day, for 35 consecutive days. Height growth of mycorrhizal and nonmycorrhizal seedlings was not affected by fumigation. Root dry weight of nonmycorrhizal seedlings was significantly reduced by all pollutant treatments in two replicate experiments. A similar reduction in root dry weight of mycorrhizal seedlings did not occur. Shoot dry weight of nonmycorrhizal seedlings was reduced in four of six pollutant treatments, and in one of six treatments of mycorrhizal seedlings. Mycorrhizal formation was extensive regardless of treatment. Apparent photosynthesis, measured every 4 days, was variable and significant differences among treatments did not occur. Total reducing sugar concentrations of roots were an inconclusive indicator of air pollutant stress.
- Antioxidant responses of pea (Pisum sativum L.) protoplastsDoulis, Andreas G. (Virginia Tech, 1994-01-15)Freshly isolated protoplasts from pea leaves were used to investigate the responses of antioxidant enzymes to oxidative stress. Two cultivars, Progress (tolerant) and Nugget (sensitive), that have differing resistance with respect to oxidative stress at the whole plant level were used. Sulfite and the superoxide generating herbicide, paraquat, were used as the oxidants. Final sulfite concentrations during photosynthetic incubations ranged from 1.5 mM to 30.0 mM. During the polarographic estimation of photosynthesis, CO₂-dependent O₂ evolution did not decrease. At sulfite concentrations of 3.0 mM or less, light-dependent O₂ evolution increased and was probably due to a concomitant SO₂-dependent O₂ evolution. Photosynthesis determined as ¹⁴CO₂ fixation was not increased at these low concentrations of sulfite. Concentrations greater than 7 mM = sulfite inhibited photosynthetic ¹⁴CO₂ fixation. No difference in these responses was found between the two cultivars. At 0.1 µM paraquat, the relative resistance to oxidative stress was reversed compared to previous studies at the whole plant level. With the tolerant cultivar, activity of the plastid antioxidant enzyme, glutathione reductase, increased after a three-hour exposure. Changes in the steady state level of glutathione reductase protein, as judged by immunoblots, did not correlate with the observed changes in enzyme activity. No change in the de novo synthesis of glutathione reductase occurred over the same period as a consequence of paraquat application. A mechanism, unrelated to oxygen free radical scavenging, may contribute to the relative tolerance to low concentrations of paraquat. On the other hand, after an eight-hour exposure to 0.1 mM PQ in the presence of Gamborg’s basal salts, superoxide dismutase activity of Progress protoplasts was enhanced 288% above the preexposure levels while glutathione reductase activity decreased 70% and ascorbate peroxidase activity decreased 90%. The relationship of these changes to oxidative damage to the photosynthetic machinery remains to be assessed.
- Assessment of air pollution impacts on vegetation in South AfricaBotha, Amanda Theophila (Virginia Polytechnic Institute and State University, 1989)Field surveys and biomonitoring network experiments were conducted in selected areas in South Africa to assess possible air pollution damage to vegetation. During field surveys, atmospheric fluoride was identified as an important pollutant that damaged vegetation in residential areas north of Cape Town. Gaseous air pollutants, including acid deposition and acidic mist, probably play a major role in the development of characteristic air pollution injury symptoms observed on pine trees in the Eastern Transvaal area. The impact of urban air pollution in the Cape Town area was evaluated by exposing bio-indicator plants in a network of eight biomonitoring network stations from June 1985 to May 1988. Sensitive Freesia and Gladiolus cultivars were used to biomonitor atmospheric fluoride, while a green bean cultivar was used as a biomonitor of atmospheric sulphur dioxide and ozone. At one location, bio-indicator plants were simultaneously exposed in a biomonitoring network station (plant cages), open-top chambers (filtered and unfiltered), as well as in open plots. The responses of plants grown under these different conditions were compared. During both the winter and summer seasons, ambient fluoride concentrations were estimated to be particularly high at the Loumar biomonitoring station (eastern side of Cape Town), as compared to that at the other biomonitoring stations. Elevated levels of atmospheric fluoride, as well as sulphur dioxide, appeared to prevail in the vicinity of industries located in the northern suburbs of Cape Town (Bothasig, Table View and Edgemead). Interveinal bleaching, which is characteristic of sulphur dioxide injury, was regularly observed on bean plants exposed at the Bothasig biomonitoring station and was usually determined to be significantly worse at this location than at the other biomonitoring stations. These results were confirmed by the evaluation of foliar sulphur content Ambient pollutant concentrations appeared to be effectively reduced inside filtered open-top chambers, as exemplified by higher biomass production and lower foliar fluoride and sulphur levels in the relevant bio-indicator species, compared to that of plants grown in the open plots. The methodology used during this research provided baseline data of the impact of air pollution on vegetation in South Africa which, in the absence of networks of sophisticated state of the art equipment, can be applied to aid in air pollution control strategies.
- Characterizing the Respiration of Stems and Roots of Three Hardwood Tree Species in the Great Smoky MountainsRakonczay, Zoltán (Virginia Tech, 1997-06-16)Carbon dioxide efflux rates (CER) of stems and roots of overstory and understory black cherry (Prunus serotina Ehrh., BC), red maple (Acer rubrum L., RM) and northern red oak (Quercus rubra L., RO) trees were monitored over two growing seasons at two contrasting sites in the Great Smoky Mountains to investigate diurnal and seasonal patterns in respiration and to develop prediction models based on environmental and plant parameters. CER of small roots (d<0-8 mm) was measured with a newly developed system which allows periodic in situ measurements by using permanently installed flexible cuvettes. Temperature-adjusted CER of roots showed no diel variation. The moderate long-term changes occurred simultaneously in all species and size classes, suggesting that they were driven mostly by environmental factors. Mean root CER ranged from 0.5 to 4.0 nmol g⁻¹ d.w. s⁻¹. Rates were up to six times higher for fine roots (d<2.0 mm) than for coarse roots. CER (per unit length) of boles (d>10 cm) and twigs (d<2 cm) was related to diameter by the function lnCER = a+D·lnd, with D between 1.2 and 1.8. A new, scale-invariant measure of CER, based on D, facilitated comparisons across diameters. Q₁₀ varied with the method of determination, and it was higher in spring (1.8-2.5) than in autumn (1.4-1.5) for all species. Daytime bole CER often fell below temperature-based predictions, likely due to transpiration. The reduction (usually <10%) was less pronounced at the drier site. Twig CER showed more substantial (often >±50%) deviations from the predictions. Deviations were higher in the canopy than in the understory. Mean bole maintenance respiration (at 20°C and d=20 cm) was 0.66, 0.43 and 0.50 μMol m⁻¹, while the volume-based growth coefficient was around 5, 6 and 8 mol cm⁻³ for BC, RM and RO, respectively. In a controlled study, BC and RM seedlings were fumigated in open-top chambers with sub-ambient, ambient and twice-ambient levels of ozone. The twice-ambient treatment reduced stem CER in BC by 50% (p=0.05) in July, but there was no treatment effect in September or in RM. Ozone reduced root/shoot ratio and diameter growth in BC, and Pmax in both species.
- Comparative study of an antioxidant defense mechanism in genotypes of eastern white pine which show differential foliar characteristicsAnderson, James V. (Virginia Tech, 1990-05-06)Approximately 10-15% of field-grown eastern white pine (Pinus strobus L.) within a nursery plantation expressed foliar characteristics similar to that induced by oxidant pollution. Sensitive genotypes (based on foliar characteristics), had a 50% reduction in needle growth, severe needle tip burn, mottling, and early needle shed during a high O₃, drought-type growing season (1988) compared to a low O₃, non-drought growing season (1989). Tolerant genotypes showed little difference in needle growth or visible injury during the two growing season. Seasonal needle ascorbate concentrations were similar during the two years however, needle glutathione (GSH) content has not. Total GSH content was two-to three-fold greater in both genotypes during the summer of 1989 compared to 1988. Cloned, tolerant trees also had 23% more total GSH when exposed to forced ambient air compared to charcoal-filtered air in open-top chambers. Cloned sensitive trees had similar GSH concentrations when exposed to different chamber treatments. One-year-old needles always had lower ratios of ascorbate/ dehydroascorbate, ascorbate/α-tocopherol and GSH/GSSG than current year needles. One-year-old needles from the tolerant tree also maintained a higher glutathione reductase (GR) activity than the sensitive tree during the late summer. Needles of eastern white pine had two isoforms of GR (GRA and GRB). GRA and GRB accounted for 17% and 83% of the GR recovered, respectively. GRA and GRB had different physical and kinetic properties. Antibody produced from GRR was reactive with both native and denatured GRB, but was cross-reactive with only native GRA. Tolerant and sensitive clones exposed to control (< 0.025 ppm) or high (4.5 ppm∙hr total dose) O₃ for O to 72 hr, showed no increase in GR activity. Only in the high-O₃-treated trees did the amount of GR protein increase. Needles from the sensitive clone contained 14, 62, and 464 ng GR mgP⁻¹ and needles from the tolerant clone contained 21, 138, and 2800 ng GR mgP⁻¹ after 0, 24 and 72 hr O₃ exposure, respectively. The results of this dissertation indicate that differential foliar characteristics in eastern white pine may be correlated with GSH turnover and its regulation by GR during periods of high oxidant stress.
- Corona switching: an osmogene mitigation techniqueAtkinson, R. Dwight (Virginia Polytechnic Institute and State University, 1988)Odorous gases such as hydrogen sulfide have long been associated with wastewater treatment plants, especially those with long forced mains which allow septic conditions to develop. With the encroachment of urban and suburban populations, many wastewater treatment plants are no longer located far enough from residential areas to prevent odor problems. This has lead to renewed efforts to develop odor control techniques. The application of high energy coronas as a means to oxidize odorous gases has been limited by the relatively small size of the corona region around a given charged wire, approximately 1 centimeter at an applied voltage of 35 kilovolts. Attempts to enlarge the effective corona region by spacing wires such that their coronas would overlap have failed due to corona extinction, the destructive interference of the electric fields surrounding adjacent charged wires. This study demonstrates that corona extinction can be avoided in a system of closely spaced wires flanked by grounded plates if the wires are energized individually instead of' simultaneously. By employing a rapid load-switching technique an essentially continuous corona sheet can be produced. A bench-scale device utilizing the rapid switching principle was constructed and its ability to remove odorous gases, including hydrogen sulfide, was demonstrated. The influence of parameters such as flowrate, inlet concentration, switching frequency, temperature, and humidity on removal efficiency was evaluated.
- Effect of Ozone on CO2 Assimilation and PSII Function in Plants with Contrasting Pollutant SensitivitiesYun, Myoung Hui (Virginia Tech, 2007-03-12)Ozone is known to be the most widespread phytotoxic air pollutant. Ozone causes visible injury, reductions in photosynthesis, growth, and yield. Plant response to ozone may vary with species, varieties, and physiological age. Comparison between sensitive and tolerant cultivars has a key role in assessing ozone damage, investigating the sites of cellular injury, and identifying ozone tolerance mechanism. The objectives of this study were to investigate the effects of high ozone concentration (200 ppb) as well as ambient ozone concentrations (under field conditions) on net CO2 assimilation and PSII function in plants with different sensitivities to ozone. Two species of plants, tobacco (Nicotiana tabacum L.) and black cherry (Prunus serotina) were studied. Gas exchange analysis and chlorophyll fluorometry were utilized to characterize physiological function. Two tobacco cultivars, Bel-B and Bel-W3, tolerant and sensitive to ozone, respectively, were grown in a greenhouse supplied with charcoal filtered air and then exposed to 200 ppb ozone for 4hr. Effects on chlorophyll fluorescence, net photosynthesis, and stomatal conductance are described. Quantum yield was calculated from chlorophyll fluorescence and the initial slope of the assimilation-light curve measured by the gas exchange method. Only the sensitive cultivar, Bel-W3, developed visible injury symptoms involving up to 50% of the 5th leaf. The maximum net photosynthetic rate of ozone-treated plants of the tolerant cultivar was reduced 40% compared to control plants immediately after ozone fumigation; however, photosynthesis recovered by 24 hr post fumigation and remained at the same level as control plants. In the sensitive cultivar, on the other hand, ozone exposure reduced maximum net photosynthesis up to 50%, with no recovery, apparently causing permanent damage to the photosystem. Reductions in apparent quantum efficiency, calculated from the assimilation-light curve, differed between cultivars. Bel-B showed an immediate depression of 14% compared to controls, whereas Bel-W3 showed a 27% decline. Electron transport rate (ETR), at saturating light intensity, decreased 58% and 80% immediately after ozone treatment in Bel-B and Bel-W3, respectively. Quantum yield decreased 28% and 36% in Bel-B and Bel-W3, respectively. It can be concluded that ozone caused a greater relative decrease in linear electron transport than maximum net photosynthesis, suggesting greater damage to PSII than the carbon reduction cycle. Two different sensitivity classes of black cherry, tolerant and sensitive, growing under natural environmental conditions in Giles County, VA were assessed for physiological responses to ambient ozone concentrations. Additional measurements were made at two other sites near Blacksburg. Leaf gas exchange rates and visible foliar injury were determined monthly during the growing seasons of 2000, 2001, and 2002 to characterize the relationship of injury to altered photosynthetic function. Ambient ozone levels were sufficient to induce visible symptoms which were highly correlated with a reduction in PnMAX (maximum net photosynthetic rate under saturating light conditions) and à CO2 (quantum yield for carbon reduction) only in sensitive black cherry. Electron transport rate (ETR) and quantum yield of PSII (à PSII) were also reduced in sensitive black cherry. Maximum photochemical efficiency (Fv/Fm) in sensitive trees was severely damaged by ambient ozone. There were positive correlations between increasing cumulative ozone concentration and substantial reductions in PnMAX and in à CO2 of sensitive trees compared to tolerant trees. There was a negative correlation between chlorophyll content and percent leaf injury in sensitive black cherry
- Effects of simulated acidic precipitation on the colonization and ice nucleation activity of Pseudomonas syringae pv. syringae and Erwinia herbicolaMurray, Joseph Marshall (Virginia Tech, 1987-03-02)Precipitation over the eastern United States has been increasing in acidity, particularly within the last three decades. The average annual pH of rain in this area is about 4.2. The foliar surface, or phylloplane, of soybean can be damaged by rain acidified to pH 2.9. Simulated acidic precipitation has an overall inhibitory influence on soil microbial processes. The effect acidic precipitation may have on epiphytic microorganisms has not been examined. Bacteria are among the most numerous residents on the phylloplane.
- Environmental Influences on Gas Exchange in Fertilized and Non-Fertilized Stands of Loblolly PineGough, Christopher Michael (Virginia Tech, 2000-07-27)Spatial and temporal variation in foliar gas exchange on both a diurnal and seasonal scale was examined in 15-year-old fertilized and non-fertilized loblolly pine in the upper and lower thirds of crowns in stands located in the North Carolina sandhills. Photosynthesis rates between control and fertilized stands for both seasonal and diurnal measurement periods were different during only three months. Photosynthesis rates were consistently greater in the upper third of the crown compared to the lower third. Seasonal trends in both conductance and transpiration closely resembled trends found in seasonal photosynthesis. Foliar nitrogen concentrations were greater in fertilized stands for all months sampled. However, nitrogen content generally did not correlate with photosynthesis rates. Mean monthly water use efficiencies were significantly higher in fertilized stands during two months and were usually greater in upper crown foliage. Common empirical gas exchange models reveal that light and vapor pressure deficit (VPD) explain a majority of the variation observed in photosynthesis and transpiration, respectively. Conductance was not modeled since environmental variation did not adequately explain conductance patterns. Predicted light response curves reveal that upper crown foliage has higher maximum photosynthesis rates, respiration rates, light compensation points, and lower initial quantum yield compared to lower crown foliage. Models predict that foliage from fertilized stands is more sensitive to VPD and light during the growing season. Transpiration models predict highly variable responses to VPD depending on the treatment combination and season. Model R-square and predicted gas exchange values suggest that seasonal acclimation occurred.
- Identification and Characterization of Genes Involved in Regulation of Ascorbate Metabolic Pathway(s) in Arabidopsis thalianaZhang, Wenyan (Virginia Tech, 2007-02-01)Vitamin C (ascorbic acid, AsA), an important primary metabolite of plants, functions as an antioxidant, an enzyme cofactor, and a cell-signaling modulator in a wide array of crucial physiological processes including biosynthesis of the cell wall, secondary metabolites and phytohormones, stress resistance, photoprotection, cell division, senescence, and growth. To identify genes that may regulate vitamin C levels in plants, about 3000 activation-tagged Arabidopsis lines were treated with ozone, which is a power oxidizing agent. Two mutants were selected for identification of potential genes involved in the regulation of vitamin C synthesis. A putative F-box gene, VCF1, and a purple acid phosphatase, AtPAP15, were identified for further characterization. Two homozygous SALK T-DNA knockouts in the open reading frame (ORF) of VCF1 exhibited high tolerance to ozone when treated with 450 ppb for 3 hours and the AsA levels of these mutants were 2 to 3 fold higher than wild-type (wt) plants. Developmental studies, using RT-PCR, indicated that foliar expression of the VCF1 gene increased with plant age from 1 to 5 weeks, whereas AsA decreased during this same period. The expression of VCF1 was higher under a low-light condition in which AsA was reduced considerably. The AsA levels in two VCF1 overexpressing lines were only 50 to 70% of wt plants. These results suggested that the putative F-box gene functions as a negative regulator of leaf ascorbate content. Overexpression of AtPAP15 with the CaMV 35S promoter resulted in up to 3-fold higher AsA levels than wt plants, where two independent SALK T-DNA insertion mutants in AtPAP15 had 50% less AsA than wt plants. Enzyme activity of bacterially expressed GST:AtPAP15 was greatest with phytate as a substrate indicating that AtPAP15 is a phytase. Phytase catalyzes hydrolysis of phytate (myo-inositol hexakisphosphate) to yield myo-inositol and free phosphate. Thus, AtPAP15 may regulate AsA levels by controlling the input of myo-inositol into this branch of AsA biosynthesis in Arabidopsis. AtPAP15 was expressed in all tested organs in wt plants and suggests that the enzyme may have functions other than phytate degradation during seed germination.
- The Influence of Age and Sterol-Inhibiting Fungicides on the Sterol and Steryl Ester Composition of SIF Sensitive and Tolerant Non-Target Chlorella SpeciesTuckey, Donna M. (Virginia Tech, 2001-04-27)1-substituted 1,2,4-triazoles form a class of agricultural chemicals known as sterol-inhibiting fungicides (SIFs). These fungicides function through the inhibition of sterol synthesis, which ultimately affects cell membrane fluidity and permeability. Of the two main types of sterols in plants, free sterols (FSs) are thought to be incorporated into membranes while conjugated sterols such as steryl esters (SEs), hypothetically, regulate homeostasis by inserting or removing FSs from cell membranes under changing environmental conditions. Non-target algae species possess sterol synthesis pathways that are affected by a range of SIFs. One of the main objectives of the current study was to determine the reason for the observed sensitivity of C. fusca and the tolerance of C. kessleri to SIFs relative to total lipid, FS, SE and FFA composition. These parameters were measured using gas chromatography and mass spectroscopy techniques. Both quantitative and qualitative differences in sterol number and type were noted relative to the FS and SE composition of the two species of algae over time. Notably, SEs were detected in both species of algae, although presence and amount varied with the organism. While SEs were more abundant in C. kessleri, higher amounts of FSs were found in C. fusca. The FS/SE ratios were 64/36 and 88/12 percent of the total sterol in C. kessleri and C. fusca, respectively. Treatment of C. fusca with 2, 4, and 6 ppm and C. kessleri with 6,12, and 24 ppm propiconazole caused an accumulation of methylated precursor sterols, resulting in slightly more FSs in both algae. Only 3 of the FSs produced following treatment were different from the control in C. fusca while 9 new sterols were found in C. kessleri. Treatment also altered the SE fraction in both species, with fewer SEs produced compared to the control, but more novel sterols in C. kessleri, suggesting a possible inverse relationship between FSs and SEs in both organisms. Several studies have implicated lipid/sterol concentrations with the potential for cellular bioaccumulation of lipophilic xenobiotics as they relate to membrane permeability. Cell age and environmental parameters can also affect lipid composition of algae. Although cell age did not affect the qualitative sterol composition of C. fusca and C. kessleri, quantitative differences were observed. Plants exposed to chemical and other environmental stresses accumulate free fatty acids (FFAs), which may be linked to biophysical membrane changes. SIF sensitive C. fusca, had inherently higher levels of FFAs than C. kessleri. Qualitatively, C. fusca exhibited higher percentages of 18:1 and lower ratios of 18:2/18:3 FFAs than C. kessleri. In response to increasing SIF treatment, the ratio of 18:2/18:3 FFAs increased in C. kessleri and declined in C. fusca. The amount of total lipid produced in the cells of C. fusca was higher than in C. kessleri during all growth stages. Variations were observed in lipid measured as a percent dry weight compared to lipid/cell as the cultures age. Inherent differences in FS, SE, and lipid composition of C. fusca and C. kessleri as well as age related changes could account for the differences in the susceptibility of the two algae to propiconazole.
- Influence of site factors and vascular conductivity on the development of procerum root diseaseButnor, John Robert (Virginia Tech, 1996-08-14)Procerum root disease (PRD) is a serious problem in eastern white pine (Pinus strobus L.) Christmas tree plantations in VIrginia. Procerum root disease is caused by Leptographium procerum (Kendr.) Wingf which is believed to be transmitted by the pales weevil Hylobius pales (Herbst). Symptoms of procerum root disease include reduced shoot elongation, reduced leaf conductance, low photosynthetic activity, low pre-dawn water potential and chlorosis of foliage. Resinous occlusion of the sapwood at the root collar is the likely cause of the suite of symptoms that resemble water stress. Increased incidence ofPRD has been associated with trees growing in poorly drained soils in low lying areas. Two studies were undertaken to explore the relationship of site factors and vascular conductivity of sapwood to the expression ofPRD symptoms in P. strobus. In the first study, plots were established in a variety of drainage classes in two Christmas tree plantations. Leaf conductance was monitored periodically in conjunction with measurements of soil factors to assess the role of abiotic factors on foliar symptom expression. At the termination of the field monitoring, trees were harvested and three vascular disease severity variables were measured: hydraulic conductivity of sapwood, percent basal occlusion and sapwood moisture content. These disease severity variables describe the permeability of sapwood to water and the relative hydration of the sapwood. Reduced leaf conductance was associated with reduced stem hydraulic conductivity, reduced sapwood moisture content and increased basal occlusion. Increased vascular disease severity and foliar symptom expression were associated with increased soil moisture content and several other factors that relate to soil moisture retention (percent slope, total porosity, textural class and bulk density). The second study was initiated to study the development of PRD in artificially inoculated P. strobus seedlings exposed to three soil water classes: droughty, optimum and saturated. Seedlings in the optimum soil water class exhibited the greatest biomass accumulation and shoot elongation, while seedlings in droughty showed the least. No negative effects of L. procerum inoculation and no symptoms ofPRD were observed eight months after inoculation regardless of the soil water class.
- The influences of atmospheric nitrates and annual climactic variables in predisposition to winter desiccation injury in Fraser fir and red spruceErwin, Susan A. (Virginia Tech, 1988-06-05)The occurrence of winter injury in red spruce (Picea rubens) L. sarg. and Fraser fir (Abies fraseri) pursh. poir. in relation to the level of atmospheric nitrates and climatic parameters of precipitation and temperatures was investigated. Data and foliage samples were collected from established field plots at 5500, 6000, and 6500 feet in the Black Mountains of North Carolina and from seedlings under 4 treatments of artificial rainfall. varying by N03 concentration. Samples were collected 4 times over the 1987 growing season. Responses were similar in shadehouse and field samples. Wax content differed between collections but not between treatment levels. except for shadehouse spruce. and wax content decreased after collection 2. Between treatment levels. differences were found in the amount of water lost over 14 hours, but not in the average initial fresh weight dry weight ratio (RWT). Differences were found in both RWT and transpiration rate over the growing season with field trees decreasing or remaining stable with each collection. and shadehouse seedlings increasing. No relationship between climatic parameters and annual leader growth was modeled because understory field trees were immature and exhibiting height growth. masking the effects of climate to understory trees. Winter injury ratings decreased from summer of 1987 to spring of 1988 and no significant differences in ratings were found between elevations. Classic winter injury symptoms were observed on one plot at 6500 feet, but most ratings greater than 0 were given because of the effects of shading from the overstory.
- Investigation of water vapor effects on the detection of nitric acid vapor with the tungstic acid techniqueMarinaro, Ralph Michael (Virginia Polytechnic Institute and State University, 1986)An automated tungstic acid technique (TAT) has been successfully used to measure gaseous HNO₃ in the presence of water vapor. The TAT is based on the diffusion of gaseous HNO₃ to the interior walls of a tube coated with tungsten VI oxide (WO₃), where it is selectively chemisorbed. The collected HNO₃ sample is thermally desorbed from the WO₃ surface, as NO, and measured by a chemiluminescent oxides of nitrogen analyzer. The integrated analyzer response is directly proportional to the nitric acid collected. Based on nitric acid hydration characteristics, a decrease in the diffusion coefficient and thus collection efficiency for denuder type measurement techniques may result with increased atmospheric water vapor (i.e., relative humidity). This study emphasizes the effect of water vapor (i.e., relative humidity) as a potential interferent for HNO₃ collection with the TAT system. The effect of water vapor (< 78% RH) on the collection efficiency for HNO₃ with the tungstic acid technique is negligible at 25°C, but is significant only at elevated sampling temperatures. This threshold effect is further substantiated and eliminated when a modified sampling collection system was designed with coolant capabilities. The new design has been tested to sub-part-per-billion (NOx analyzer detection limit) levels with minimal loss of gaseous HNO₃ signal, thereby increasing sensitivity to atmospheric HNO₃ concentrations and maintaining the gas/aerosol sample integrity.
- Laboratory and field ecophysiological studies on the impact of air pollution on red spruce and Fraser firTyszko, Piotr (Virginia Tech, 1991)Three studies were performed to investigate the impact of air pollution on high-elevation red spruce-Fraser fir forests in the Southern Appalachians. In the first study, red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh.) Poir.) seedlings were submitted to long-term (2.5 yrs), multiple growing cycle (4 and 5, respectively), intermittent ozone fumigations (0.025, 0.070, and 0.150 ppm). No effect of ozone exposure on growth and gas exchange of the seedlings was found. Net photosynthesis at saturating light intensity was reduced in both species and the light compensation point was shifted upwards in spruce when exposed to ozone. Fraser fir seedlings showed inconsistent responses of CO₂ curve parameters to ozone exposure. There were indications that ozone exposure modified cell wall modulus of elasticity in both species. In the second study, the impact of summer exposure to ambient pollutants on winter hardiness in red spruce seedlings was examined. The seedlings were subjected to the following summertime treatments while kept in exclusion chambers on the top of Whitetop Mountain (Virginia): ambient air and clouds, ambient air with clouds excluded, charcoal filtered air, and chamberless control treatment. During the following winter the seedlings were placed in Blacksburg (Virginia), in two locations: in the open and in a shadehouse. A number of conducted tests indicated that there were significant differences in winter damage between the chamber treatments and chamberless control, as well as between the winter exposure locations. Among the summer chamber exposure regimes, the treatment excluding clouds seemed to perform the best (although not all the evidence supports the latter statement). In the third study, the physiology of red spruce trees of various sizes (seedlings, saplings, and overstory trees), growing on two sites on the top of Whitetop Mtn., was compared and related to ambient ozone concentration. Some seedlings were treated with an antioxidant EDU, to help evaluate the impact of ozone on their physiology. The trees of various sizes showed clear differences in gas exchange, with overstory trees photosynthesizing at the lowest rates, and seedlings - at the highest. Overstory trees also showed more negative shoot water potential and higher night respiration than smaller tree sizes. No deleterious effects of ambient ozone on red spruce physiology were detected.
- Nutritional and PGR effects on lipid unsaturation, osmoregulant content, and relation to bermudagrass cold hardinessMunshaw, Gregg C. (Virginia Tech, 2003-07-30)Winter injury of bermudagrass (Cynodon spp.) continues to be a problem across the transition zone. In an attempt to delay or induce winter dormancy while maintaining cold hardiness, applications of seaweed extract (SWE) (0.54 kg ha-1), ethephon (16 L ha-1), Fe (1 kg ha-1), and N (49 kg ha-1) took place every three weeks during the fall of 2001 and 2002. Cultivars examined included 'Riviera', 'Midiron', 'Princess', and 'Tifway'. Tifway exhibited greatest fall color retention in both years of the study. Ethephon promoted early senescence and turfgrass quality during fall ratings in both years of the study while N, Fe, and SWE increased quality over the control in 2001 and only N showed better quality and color retention over the control in 2002. Samples removed from cold acclimated plots were artificially frozen as a measure of cold hardiness. Treatments did not have an effect on post freeze regrowth, however, cultivar was significant in both years. Midiron showed best regrowth followed by Riviera, Tifway, and Princess. In both years Riviera and Midiron displayed the quickest and greatest amount of spring greenup followed by Tifway and then Princess. Ethephon reduced greenup in both years and SWE, Fe, and N showed no differences from the control in 2001 and Fe showed significantly better greenup in 2002. Proline and Linolenic acid levels were highest in Midiron, followed by Riviera, Tifway, and Princess. Nitrogen, SWE, and Fe generally did not have an effect on linolenic acid and no consistent effects were noted on proline concentration. Ethephon treatments did not have an effect on linolenic acid levels, however, there was a negative effect on proline concentrations. The results of this study indicate that judicial N applications during the fall can promote color retention and do not have a negative effect on bermudagrass cold-tolerance. Linolenic acid and proline findings also help to explain differences in cold-tolerance between different bermudagrass cultivars.
- Physiological response of loblolly pine seedlings to moisture-stress conditioning and their subsequent performance during water stressSeiler, John R. (Virginia Polytechnic Institute and State University, 1984)The effect of moisture stress conditioning on the drought tolerance and performance of three open-pollinated families of loblolly pine (Pinus taeda I.) during water stress were investigated. Seedlings were subjected to prolonged sublethal drought treatments which included a watered control, a moderate stress treatment (MWS, seedlings watered only when needle water potential reached -0.8 MPa) and a severe stress treatment (SWS, seedlings watered only when water potential reached -1.4 MPa). After the conditioning period, numerous physiological and morphological parameters were measured, and performance of seedlings during water stress evaluated. Significant decreases in needle osmotic potential occurred in moisture stress conditioned seedlings. As a result, turgor in conditioned seedlings was equal to or greater than control seedlings even at lower needle water potentials. Photosynthesis vas decreased greatly with reduced needle water potential. However, the MWS and SWS seedlings maintained photosynthesis to water potentials 0.15 and 0.45 MPa lower than control seedlings, respectively. This response is likely the result of both osmotic adjustment, and an acclimation of the photosynthetic process resulting in less non-stomatal inhibition of photosynthesis at low needle water potentials. Initial needle conductance and transpiration, but not photosynthesis, were reduced greatly by the conditioning treatments, and resulted in improved water-use efficiency in conditioned seedlings. The response of stomata to changing vapor pressure deficit was increased through moisture stress conditioning. Boot growth was affected more by moisture stress than shoot growth, causing a decrease in root/shoot ratio. Changes in root morphology as a result of conditioning are not likely to improve the drought tolerance of loblolly pine seedlings. SWS conditioning significantly improved the height growth increment and resulted in slightly greater shoot and root biomass of outplanted, containerized seedlings after the first growing season, despite these seedlings being much smaller at the time of planting. Differences between seed sources did occur in the experiments, with a source from Texas generally showing the least response to moisture stress conditioning.
- Predictive model for plume opacityLee, Kai-Tien (Virginia Polytechnic Institute and State University, 1985)In recent years, as control systems for boiler emissions have been upgraded, some utility sources have experienced increased plume opacity. Cases of plume opacity exceeding in-stack opacity are due to 1) the aerosol formed by condensation of primary sulfuric acid and water vapor onto polydisperse plume particles and 2) the presence of fine particles which grow into the visual size range by heterogeneous condensation and coagulation processes as the plume is cooled and diluted by mixing with the ambient air. In order to better understand the factors leading up to acid plume formation, a computer simulation model has been developed. This plume opacity model has been utilized to simulate sulfuric acid aerosol formation and growth. These processes result from homogeneous nucleation, condensation and coagulation which substantially increase the concentration of submicrometer sized aerosols. These phenomena bring about significant increases in plume opacity. Theoretical relationships have been derived and transformed into 21 computer model to predict plume opacity at various downwind distances resulting from pulverized coal combustion operations. This model consists of relatively independent components-such as an optics module, a bimodal particle size distribution module, a polydisperse coagulation module, a vapor condensation and nucleation module and a plume dispersion module-which are linked together to relate specific flue gas emissions and meterological conditions to plume opacity. This unique, near-stack, plume-opacity-model approach provides an excellent tool for understanding and dealing with such complex issues as: • increasing plume opacity observed for emissions containing sulfuric acid aerosols, • explaining the correlation between primary particle size distribution and light—scattering effects, • predicting the opacity level resulting from combustion of various coal types, • predicting control equipment effects on plume opacity.
- Procerum root disease physiology and disease interactions with ozoneCarlson, Jodi A. (Virginia Tech, 1994-02-17)Procerum root disease of eastern white pine (Pinus strobus L.), caused by Leptographium procerum (Kendr.) Wingf., has been epidemic in Virginia Christmas tree plantations since 1990. Symptoms of chlorosis, wilt, and decreased apical growth resemble those of water stress. Resin infiltration of the xylem at the stem base may be responsible for vascular occlusion leading to severe water deficits and mortality. The pathogen has been isolated from the roots of ozone-sensitive eastern white pines in the field, although not from nearby tolerant trees, and it may be that ozone sensitivity predisposes the trees to infection. The objectives of my Studies were to investigate the physiology of diseased white pines, and to determine the effects of ozone fumigation on disease development. Impacts of vascular occlusion upon host water relations and gas exchange were investigated in 8-yr-old, plantation-grown, white pine Christmas trees. Disease severity was estimated as the proportion of resin-soaked cross-sectional area at the base of the stem. The linear response of a suite of six physiological variables to disease severity was highly significant. Individually, the variables pre-dawn water potential, daily change in pre-dawn to mid-day water potential, stomatal conductance, and photosynthetic and transpiration rates all decreased significantly with increasing disease severity. Fumigation studies were conducted on white and loblolly (P. taeda L.) pine seedlings to determine if ozone exposure increased the incidence of root disease or the amount of stem tissue colonized by L. procerum. Roots were inoculated by soil drenching with conidial suspension, and stems were wounded at the base and inoculated with mycelium. Beginning 24 h post-inoculation, and for 14 consecutive days, seedlings were fumigated in closed chambers with charcoal-filtered air or 200 ppb ozone for 5 h/day, then removed to a charcoal-filtered greenhouse. Six weeks post-inoculation, root and stem tissue were plated on a medium selective for L. procerum. Ozone treatment did not significantly affect the proportion of diseased roots per seedling or the vertical colonization of stem tissue in seedlings of either species.
- Purification and characterization of glutathione reductase isozymes specific for the state of cold hardiness of red spruce (Picea rubens sarg.)Hausladen, Alfred (Virginia Tech, 1992-09-05)Isozymes of glutathione reductase (GR) have been purified from red spruce. A major isozyme is present throughout the year, while one isozyme is present only during summer in non-hardened needles. A third isozyme is present only during winter in hardened needles. The isozymes present in non-hardened and hardened needles have been designated GR-INH and GR-IH, respectively. The major GR isoform has been designated GR-2NH or GR-H, depending on whether it was purified from nonhardened or hardened needles. GR-2NH and GR-2H have been purified to homogeneity, as judged by SDS polyacrylamide gel electrophoresis. GR-lNH and GR-IH showed several contaminating proteins in the final preparations. GR-2NH and GR-2H could each be further separated into five charge isomers by isoelectric focussing, and the relative abundance of these charge isomers differs between preparations from non-hardened and hardened needles. GR-1NH and GR-1H differ from GR-2NH and GR-2H with respect to their kinetic, immunological, and physical characteristics. GR-1NH appears different from GR-1H based on chromatographic and electrophoretic behaviour. However, no differences in the temperature dependence of kinetic parameters between either isozyme have been found. The amino-terminal sequences of GR-1H and GR-2H show a high degree of homology with GR's from other organisms. Oligonucleotides derived from the amino-terminal sequences of GR-1H and GR-2H, or from conserved regions within other GR's have been derived and used to amplify cDNA by the polymerase chain reaction. A 500 base pair cDNA, produced with oligonucleotides expected to be specific for GR-1H has been used to transform E.coli. The differences between the isozymes are discussed with respect to temperature adaptation of enzyme function in a species that experiences extreme temperature differences during its life cycle.