Browsing by Author "Christiaen, Anne-Claire"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Adsorption of water and carbon monoxide on Cu₂O(111) single crystal surfacesChristiaen, Anne-Claire (Virginia Tech, 1994-08-04)Water and CO adsorptions were studied over the stoichiometric and the oxygen-deficient Cu₂O(111) surfaces, using thermal desorption spectroscopy (TDS), ultraviolet photoelectron spectroscopy (UPS), and X-ray photoelectron spectroscopy (XPS). Water is the only desorbing species detected in TDS and the extent of dissociation is unaffected by the surface condition: ≃ 0.25 monolayers of water dissociate on Cu₂O(111) regardless of surface condition. The local defect environment around oxygen vacancies does not play a significant role in the activity of the Cu₂O(111) surface for the dissociation of water. CO is found to bind molecularly to the surface through the carbon atom and with a heat of adsorption of 22 kcal/mol, higher value than that of CO on Cu₂O(100) (16.7 kcal/mol). This suggests that the local geometry of adsorption sites may play an important role in the way CO binds to Cu₂O surfaces. Electronic changes upon CO adsorption and the higher heat of adsorption indicate an increased σ-donor character for CO, with some π-backbonding interactions. The local defect environment around oxygen vacancies does not appear to affect CO adsorption on Cu₂O(111) surfaces.
- Evaluation of the durability of elastomeric easy-release coatingsChristiaen, Anne-Claire (Virginia Tech, 1998-07-16)Novel coatings have been designed to solve problems associated with biofouling of marine structures, particularly ship hulls. The best candidates to date are multilayered coatings incorporating silicone rubber technology. These materials are efficient because they exhibit excellent release properties. However, they are very soft and tend to be more susceptible to various forms of mechanical damage. Fundamental analysis of the durability of these coatings has been done using standard laboratory tests. Simulative studies are essential to screen candidates as well as to predict the true life of the systems. The goal of this project was to develop a testing protocol for the evaluation of the durability of elastomeric easy release coatings and to implement it on selected candidate coatings. A brushing apparatus was designed and built to simulate the cleaning processes of ship hulls. Wear was measured with profilometry. The proposed methodology is valuable to study the processes of wear of the coatings, to screen various materials and to identify parameters, either functional or material, which would directly affect their durability. Two groups of candidate coatings were tested: the EXS series and the NRL series. The EXS samples showed better wear resistance than the NRL samples and showed no dependence on the rotational speed of the brushes. The NRL samples showed that increasing the sliding speed resulted in a decrease in wear. An increase in the applied load resulted in increased wear for both sample series. The effect of coating thickness was also investigated and discrimination between the proposed coatings could not be established because the tips of the bristles were sharp and irregular. Scratches matching the path of the brush bristles were observed in the wear scars of both sample types under all load and speed conditions. The NRL samples also exhibited ridges perpendicular to the sliding direction similar to the abrasion pattern.