Browsing by Author "Chu, Shuyu"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Change Detection and Analysis of Data with Heterogeneous StructuresChu, Shuyu (Virginia Tech, 2017-07-28)Heterogeneous data with different characteristics are ubiquitous in the modern digital world. For example, the observations collected from a process may change on its mean or variance. In numerous applications, data are often of mixed types including both discrete and continuous variables. Heterogeneity also commonly arises in data when underlying models vary across different segments. Besides, the underlying pattern of data may change in different dimensions, such as in time and space. The diversity of heterogeneous data structures makes statistical modeling and analysis challenging. Detection of change-points in heterogeneous data has attracted great attention from a variety of application areas, such as quality control in manufacturing, protest event detection in social science, purchase likelihood prediction in business analytics, and organ state change in the biomedical engineering. However, due to the extraordinary diversity of the heterogeneous data structures and complexity of the underlying dynamic patterns, the change-detection and analysis of such data is quite challenging. This dissertation aims to develop novel statistical modeling methodologies to analyze four types of heterogeneous data and to find change-points efficiently. The proposed approaches have been applied to solve real-world problems and can be potentially applied to a broad range of areas.
- Combining Participatory Influenza Surveillance with Modeling and Forecasting: Three Alternative ApproachesBrownstein, John S.; Marathe, Achla (JMIR Publications, 2017)Background: Influenza outbreaks affect millions of people every year and its surveillance is usually carried out in developed countries through a network of sentinel doctors who report the weekly number of Influenza-like Illness cases observed among the visited patients. Monitoring and forecasting the evolution of these outbreaks supports decision makers in designing effective interventions and allocating resources to mitigate their impact. Objective: Describe the existing participatory surveillance approaches that have been used for modeling and forecasting of the seasonal influenza epidemic, and how they can help strengthen real-time epidemic science and provide a more rigorous understanding of epidemic conditions. Methods: We describe three different participatory surveillance systems, WISDM (Widely Internet Sourced Distributed Monitoring), Influenzanet and Flu Near You (FNY), and show how modeling and simulation can be or has been combined with participatory disease surveillance to: i) measure the non-response bias in a participatory surveillance sample using WISDM; and ii) nowcast and forecast influenza activity in different parts of the world (using Influenzanet and Flu Near You). Results: WISDM-based results measure the participatory and sample bias for three epidemic metrics i.e. attack rate, peak infection rate, and time-to-peak, and find the participatory bias to be the largest component of the total bias. The Influenzanet platform shows that digital participatory surveillance data combined with a realistic data-driven epidemiological model can provide both short-term and long-term forecasts of epidemic intensities, and the ground truth data lie within the 95 percent confidence intervals for most weeks. The statistical accuracy of the ensemble forecasts increase as the season progresses. The Flu Near You platform shows that participatory surveillance data provide accurate short-term flu activity forecasts and influenza activity predictions. The correlation of the HealthMap Flu Trends estimates with the observed CDC ILI rates is 0.99 for 2013-2015. Additional data sources lead to an error reduction of about 40% when compared to the estimates of the model that only incorporates CDC historical information. Conclusions: While the advantages of participatory surveillance, compared to traditional surveillance, include its timeliness, lower costs, and broader reach, it is limited by a lack of control over the characteristics of the population sample. Modeling and simulation can help overcome this limitation as well as provide real-time and long-term forecasting of influenza activity in data-poor parts of the world.
- Disparities in spread and control of influenza in slums of Delhi: findings from an agent-based modelling studyAdiga, Abhijin; Chu, Shuyu; Kuhlman, Christopher J.; Lewis, Bryan L.; Marathe, Achla; Nordberg, Eric K.; Swarup, Samarth; Vullikanti, Anil; Wilson, Mandy L. (BMJ Publishing Group, 2017-11-03)Objectives: This research studies the role of slums in the spread and control of infectious diseases in the National Capital Territory of India, Delhi, using detailed social contact networks of its residents. Methods: We use an agent-based model to study the spread of influenza in Delhi through person-to-person contact. Two different networks are used: one in which slum and non-slum regions are treated the same, and the other in which 298 slum zones are identified. In the second network, slum-specific demographics and activities are assigned to the individuals whose homes reside inside these zones. The main effects of integrating slums are that the network has more home-related contacts due to larger family sizes and more outside contacts due to more daily activities outside home. Various vaccination and social distancing interventions are applied to control the spread of influenza. Results: Simulation-based results show that when slum attributes are ignored, the effectiveness of vaccination can be overestimated by 30%–55%, in terms of reducing the peak number of infections and the size of the epidemic, and in delaying the time to peak infection. The slum population sustains greater infection rates under all intervention scenarios in the network that treats slums differently. Vaccination strategy performs better than social distancing strategies in slums. Conclusions: Unique characteristics of slums play a significant role in the spread of infectious diseases. Modelling slums and estimating their impact on epidemics will help policy makers and regulators more accurately prioritise allocation of scarce medical resources and implement public health policies.
- Effect of modelling slum populations on influenza spread in DelhiChen, Jiangzhuo; Chu, Shuyu; Chungbaek, Youngyun; Khan, Maleq; Kuhlman, Christopher J.; Marathe, Achla; Mortveit, Henning; Vullikanti, Anil; Xie, Dawen (BMJ, 2016-01-01)