Browsing by Author "Colacino, Katelyn R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Cytotoxicity and Cellular Uptake of Cellulose NanocrystalsDong, Shuping; Hirani, Anjali A.; Colacino, Katelyn R.; Lee, Yong Woo; Roman, Maren (2012-09-21)There is growing evidence that filamentous nanoparticles offer advantages over spherical ones in drug delivery applications. The purpose of this study was to assess the potential of rod-like, plant-derived cellulose nanocrystals (CNCs) for nanomedical uses. Besides a nonspherical morphology, their facile bioconjugation, surface hydrophilicity and small size render CNCs promising drug carriers. The cytotoxicity of CNCs against nine different cell lines (HBMEC, bEnd.3, RAW 264.7, MCF-10A, MDA-MB-231, MDA-MB-468, KB, PC-3 and C6) was determined by MTT and LDH assay. CNCs showed no cytotoxic effects against any of these cell lines in the concentration range and exposure time studied (0–50 µg/mL and 48 h, respectively). Cellular uptake of fluorescein-50 - isothiocyanate-labeled CNCs by these cell lines, quantified with a fluorescence microplate reader, was minimal. The lack of cytotoxicity and the low nonspecific cellular uptake support our hypothesis that CNCs are good candidates for nanomedical applications.
- Folate Conjugated Cellulose Nanocrystals Potentiate Irreversible Electroporation-induced Cytotoxicity for the Selective Treatment of Cancer CellsColacino, Katelyn R.; Arena, Christopher B.; Dong, Shuping; Roman, Maren; Davalos, Rafael V.; Lee, Yong Woo (Adenine Press, 2014-04-16)Cellulose nanocrystals are rod-shaped, crystalline nanoparticles that have shown prom- ise in a number of industrial applications for their unique chemical and physical properties. However, investigations of their abilities in the biomedical field are limited. The goal of this study is to show the potential use of folic acid-conjugated cellulose nanocrystals in the potentiation of irreversible electroporation-induced cell death in folate receptor (FR)-positive cancers. We optimized key pulse parameters including pulse duration, intensity, and incubation time with nanoparticles prior to electroporation. FR-positive cancer cells, KB and MDA-MB-468, were preincubated with cellulose nanocrystals (CNCs) conjugated with the targeting molecule folic acid (FA), 10 and 20 min respectively, prior to application of the optimized pulse electric field (PEF), 600 and 500 V/cm respectively. We have shown cellulose nanocrystals’ ability to potentiate a new technique for tumor ablation, irreversible electroporation. Pre-incubation with FA-conjugated CNCs (CNC-FA) has shown a significant increase in cytotoxicity induced by irreversible electroporation in FR-positive cancer cells, KB and MDA-MB-468. Non-targeted CNCs (CNC-COOH) did not potentiate IRE when preincubated at the same parameters as previously stated in these cell types. In addition, CNC-FA did not potentiate irreversible electroporation-induced cytotoxicity in a FR-negative cancer cell type, A549. Without changing irreversible electroporation parameters it is possible to increase the cytotoxic effect on FR-positive cancer cells by exploiting the specific binding of FA to the FR, while not causing further damage to FR-negative tissue.