Browsing by Author "Colford, John M., Jr."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Boiled or Bottled: Regional and Seasonal Exposures to Drinking Water Contamination and Household Air Pollution in Rural ChinaCohen, Alasdair; Pillarisetti, Ajay; Luo, Qing; Ling, Hongxing; Zhong, Gemei; Colford, John M., Jr.; Smith, Kirk R.; Ray, Isha; Tao, Yong (National Institute of Environmental Health Sciences, 2020-12-04)Background: Inadequate access to safe drinking water remains a global health problem, particularly in rural areas. Boiling is the most commonly used form of point-of-use household water treatment (HWT) globally, although the use of bottled water in low- and middle-income countries (LMICs) is increasing rapidly. Objectives: We assessed the regional and seasonal prevalence of HWT practices (including bottled water use) in low-income rural areas in two Chinese provinces, evaluated the microbiological safety of drinking water and associated health outcomes, and estimated the air pollution burden associated with the use of solid fuels for boiling. Methods: We conducted cross-sectional surveys and collected drinking water samples from 1,033 rural households in Guangxi and Henan provinces. Temperature sensors affixed to pots and electric kettles were used to corroborate self-reported boiling frequencies and durations, which were used to model household air pollution (HAP) in terms of estimated particulate matter ≤2.5μm in aerodynamic diameter (PM2.5) concentrations. Results: Based on summer data collection in both provinces, after controlling for covariates, boiling with electric kettles was associated with the largest log reduction in thermotolerant coliforms (TTCs) (−0.66 log10 TTC most probable number/100mL), followed by boiling with pots (−0.58), and bottled water use (−0.39); all were statistically significant (p<0.001). Boiling with electric kettles was associated with a reduced risk of TTC contamination [risk ratio (RR)=0.25, p<0.001] and reported diarrhea (RR=0.80, p=0.672). TTCs were detected in 51% (n=136) of bottled water samples. For households boiling with biomass, modeled PM2.5 concentrations averaged 79 μg/m3 (standard deviation=21). Discussion: Our findings suggest that where boiling is already common and electricity access is widespread, the promotion of electricity-based boiling may represent a pragmatic stop-gap means of expanding safe water access until centralized, or decentralized, treated drinking water is available; displacing biomass use for water boiling could also reduce HAP concentrations and exposures. Our results also highlight the risks of increasing bottled water use in rural areas, and its potential to displace other sources of safe drinking water, which could in turn hamper efforts in China and other LMICs toward universal and affordable safe water access.
- Bottled water quality and associated health outcomes: a systematic review and meta-analysis of 20 years of published data from ChinaCohen, Alasdair; Cui, Jingyi; Song, Qingyang; Xia, Qiwen; Huan, Jiexuan; Guo, Yalu; Sun, Yixin; Colford, John M., Jr.; Ray, Isha (IOP Publishing, 2022-01-20)Bottled water is a rapidly growing yet relatively understudied source of drinking water globally. In addition to concerns about the safety of bottled water, the adverse environmental health and social impacts associated with bottled water production, distribution, consumption, and reliance are considerable. Our objective was to comprehensively review, analyze, and synthesize ∼20 years of publicly available data on bottled water quality and associated health outcomes in China. We conducted a systematic review and meta-analysis of publicly available studies of bottled water quality and associated health outcomes in China published between 1995 and early 2016 (in Chinese and English). We pre-specified and registered our study protocol, independently replicated key analyses, and followed standardized reporting guidelines. Our search identified 7059 potentially eligible records. Following screening, after full-text review of 476 publications, 216 (reporting results from 625 studies) met our eligibility criteria. Among many findings, 93.7% (SD = 10.1) of 24 585 samples tested for total coliforms (n = 241 studies), and 92.6% (SD = 12.7) of 7261 samples tested for nitrites (n = 85 studies), were in compliance with China’s relevant bottled water standards. Of the studies reporting concentration data for lead (n = 8), arsenic (n = 5), cadmium (n = 3), and mercury (n = 3), median concentrations were within China’s standards for all but one study of cadmium. Only nine publications reported health outcome data, eight of which were outbreak investigations. Overall, we observed evidence of stable or increasing trends in the proportions of samples in compliance over the ∼20 year period; after controlling for other variables via meta-regression, the association was significant for microbiological but not chemical outcomes (p = 0.017 and p = 0.115, respectively). Bottled water is typically marketed as being safe, yet in most countries it is less well-regulated than utility-supplied drinking water. Given the trend of increasing bottled water use in China and globally—and the associated environmental health impacts—we hope this work will help to inform policies and regulations for improving bottled water safety, while further highlighting the need for substantially expanding the provision of safe and affordable utility-supplied drinking water globally.