Browsing by Author "Collier, Fayette"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Comprehensive Multi-Scale Progressive Failure Analysis for Damage Arresting Advanced Aerospace Hybrid StructuresHorton, Brandon Alexander (Virginia Tech, 2017-08-31)In recent years, the prevalence and application of composite materials has exploded. Due to the demands of commercial transportation, the aviation industry has taken a leading role in the integration of composite structures. Among the leading concepts to develop lighter, more fuel-efficient commercial transport is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The highly integrated structure of PRSEUS allows pressurized, non-circular fuselage designs to be implemented, enabling the feasibility of Hybrid Wing Body (HWB) aircraft. In addition to its unique fabrication process, the through-thickness stitching utilized by PRSEUS overcomes the low post-damage strength present in typical composites. Although many proof-of-concept tests have been performed that demonstrate the potential for PRSEUS, efficient computational tools must be developed before the concept can be commercially certified and implemented. In an attempt to address this need, a comprehensive modeling approach is developed that investigates PRSEUS at multiple scales. The majority of available experiments for comparison have been conducted at the coupon level. Therefore, a computational methodology is progressively developed based on physically realistic concepts without the use of tuning parameters. A thorough verification study is performed to identify the most effective approach to model PRSEUS, including the effect of element type, boundary conditions, bonding properties, and model fidelity. Using the results of this baseline study, a high fidelity stringer model is created at the component scale and validated against the existing experiments. Finally, the validated model is extended to larger scales to compare PRSEUS to the current state-of-the-art. Throughout the current work, the developed methodology is demonstrated to make accurate predictions that are well beyond the capability of existing predictive models. While using commercially available predictive tools, the methodology developed herein can accurately predict local behavior up to and beyond failure for stitched structures such as PRSEUS for the first time. Additionally, by extending the methodology to a large scale fuselage section drop scenario, the dynamic behavior of PRSEUS was investigated for the first time. With the predictive capabilities and unique insight provided, the work herein may serve to benefit future iteration of PRSEUS as well as certification by analysis efforts for future airframe development.
- Curvature effects on the stability of three-dimensional laminar boundary layersCollier, Fayette (Virginia Polytechnic Institute and State University, 1988)The linear stability equations which govern the growth of small periodic disturbances for compressible, three-dimensional laminar boundary layer flow are derived in an orthogonal curvilinear coordinate system. The parallel flow assumption is utilized in the derivation. The system of equations is solved using a finite difference scheme similar to that in a current state-of-the-art stability analysis code, COSAL. The LR method and the inverse Rayleigh iteration procedure are used to calculate the eigenvalues. The stability of the three-dimensional compressible laminar boundary layer including the effects of streamline and surface curvature for flows past swept wings where crossflow type disturbances dominate is calculated. A parametric study is performed varying Reynolds number and sweep angle on an airfoil with a concave cutout in the leading edge region of the lower surface. It is known that convex curvature has a stabilizing effect on the laminar boundary layer. Conversely, concave curvature has a destabilizing effect. The magnitude of these effects for swept wing flows is determined. Non-stationary as well as stationary disturbances are calculated, and the most amplified frequencies are identified. N-factor correlations at the measured location of transition are made utilizing flight test data. Results indicate that amplification rates and hence, N-factors, for swept wing flows over convex surfaces are reduced by about 30 to 50 percent when curvature effects are included in the linear stability analysis. In addition, comparisons are made with some experimental results on a swept concave-convex surface. Calculated velocity vector plots show good agreement with observed disturbances in the laminar boundary layer over the concave surface. The results of the calculations show that concave curvature destabilizes "crossflow” type disturbances with a 30 percent increase in amplification rate.