Browsing by Author "Convertino, Matteo"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Collaborative efforts to forecast seasonal influenza in the United States, 2015–2016McGowan, Craig J.; Biggerstaff, Matthew; Johansson, Michael; Apfeldorf, Karyn M.; Ben-Nun, Michal; Brooks, Logan; Convertino, Matteo; Erraguntla, Madhav; Farrow, David C.; Freeze, John; Ghosh, Saurav; Hyun, Sangwon; Kandula, Sasikiran; Lega, Joceline; Liu, Yang; Michaud, Nicholas; Morita, Haruka; Niemi, Jarad; Ramakrishnan, Naren; Ray, Evan L.; Reich, Nicholas G.; Riley, Pete; Shaman, Jeffrey; Tibshirani, Ryan; Vespignani, Alessandro; Zhang, Qian; Reed, Carrie; Rosenfeld, Roni; Ulloa, Nehemias; Will, Katie; Turtle, James; Bacon, David; Riley, Steven; Yang, Wan; The Influenza Forecasting Working Group (Nature Publishing Group, 2019-01-24)Since 2013, the Centers for Disease Control and Prevention (CDC) has hosted an annual influenza season forecasting challenge. The 2015–2016 challenge consisted of weekly probabilistic forecasts of multiple targets, including fourteen models submitted by eleven teams. Forecast skill was evaluated using a modified logarithmic score. We averaged submitted forecasts into a mean ensemble model and compared them against predictions based on historical trends. Forecast skill was highest for seasonal peak intensity and short-term forecasts, while forecast skill for timing of season onset and peak week was generally low. Higher forecast skill was associated with team participation in previous influenza forecasting challenges and utilization of ensemble forecasting techniques. The mean ensemble consistently performed well and outperformed historical trend predictions. CDC and contributing teams will continue to advance influenza forecasting and work to improve the accuracy and reliability of forecasts to facilitate increased incorporation into public health response efforts. © 2019, The Author(s).
- An open challenge to advance probabilistic forecasting for dengue epidemicsJohansson, Michael A.; Apfeldorf, Karyn M.; Dobson, Scott; Devita, Jason; Buczak, Anna L.; Baugher, Benjamin; Moniz, Linda J.; Bagley, Thomas; Babin, Steven M.; Guven, Erhan; Yamana, Teresa K.; Shaman, Jeffrey; Moschou, Terry; Lothian, Nick; Lane, Aaron; Osborne, Grant; Jiang, Gao; Brooks, Logan C.; Farrow, David C.; Hyun, Sangwon; Tibshirani, Ryan J.; Rosenfeld, Roni; Lessler, Justin; Reich, Nicholas G.; Cummings, Derek AT T.; Lauer, Stephen A.; Moore, Sean M.; Clapham, Hannah E.; Lowe, Rachel; Bailey, Trevor C.; Garcia-Diez, Markel; Carvalho, Marilia Sa; Rodo, Xavier; Sardar, Tridip; Paul, Richard; Ray, Evan L.; Sakrejda, Krzysztof; Brown, Alexandria C.; Meng, Xi; Osoba, Osonde; Vardavas, Raffaele; Manheim, David; Moore, Melinda; Rao, Dhananjai M.; Porco, Travis C.; Ackley, Sarah; Liu, Fengchen; Worden, Lee; Convertino, Matteo; Liu, Yang; Reddy, Abraham; Ortiz, Eloy; Rivero, Jorge; Brito, Humberto; Juarrero, Alicia; Johnson, Leah R.; Gramacy, Robert B.; Cohen, Jeremy M.; Mordecai, Erin A.; Murdock, Courtney C.; Rohr, Jason R.; Ryan, Sadie J.; Stewart-Ibarra, Anna M.; Weikel, Daniel P.; Jutla, Antarpreet; Khan, Rakibul; Poultney, Marissa; Colwell, Rita R.; Rivera-Garcia, Brenda; Barker, Christopher M.; Bell, Jesse E.; Biggerstaff, Matthew; Swerdlow, David; Mier-y-Teran-Romero, Luis; Forshey, Brett M.; Trtanj, Juli; Asher, Jason; Clay, Matt; Margolis, Harold S.; Hebbeler, Andrew M.; George, Dylan; Chretien, Jean-Paul (National Academy of Sciences, 2019-11-26)A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico. Forecast skill was highly variable across teams and targets. While numerous forecasts showed high skill for midseason situational awareness, early season skill was low, and skill was generally lowest for high incidence seasons, those for which forecasts would be most valuable. A comparison of modeling approaches revealed that average forecast skill was lower for models including biologically meaningful data and mechanisms and that both multimodel and multiteam ensemble forecasts consistently outperformed individual model forecasts. Leveraging these insights, data, and the forecasting framework will be critical to improve forecast skill and the application of forecasts in real time for epidemic preparedness and response. Moreover, key components of this project-integration with public health needs, a common forecasting framework, shared and standardized data, and open participation-can help advance infectious disease forecasting beyond dengue.
- Risk Map of Cholera Infection for Vaccine Deployment: The Eastern Kolkata CaseYou, Young Ae; Ali, Mohammad; Kanungo, Suman; Sah, Binod; Manna, Byomkesh; Puri, Mahesh; Nair, G. Balakrish; Bhattacharya, Sujit Kumar; Convertino, Matteo; Deen, Jacqueline L.; Lopez, Anna Lena; Wierzba, Thomas F.; Clemens, John; Sur, Dipika (PLOS, 2013-08-02)Background Despite advancement of our knowledge, cholera remains a public health concern. During March-April 2010, a large cholera outbreak afflicted the eastern part of Kolkata, India. The quantification of importance of socio-environmental factors in the risk of cholera, and the calculation of the risk is fundamental for deploying vaccination strategies. Here we investigate socio-environmental characteristics between high and low risk areas as well as the potential impact of vaccination on the spatial occurrence of the disease. Methods and Findings The study area comprised three wards of Kolkata Municipal Corporation. A mass cholera vaccination campaign was conducted in mid-2006 as the part of a clinical trial. Cholera cases and data of the trial to identify high risk areas for cholera were analyzed. We used a generalized additive model (GAM) to detect risk areas, and to evaluate the importance of socio-environmental characteristics between high and low risk areas. During the one-year pre-vaccination and two-year post-vaccination periods, 95 and 183 cholera cases were detected in 111,882 and 121,827 study participants, respectively. The GAM model predicts that high risk areas in the west part of the study area where the outbreak largely occurred. High risk areas in both periods were characterized by poor people, use of unsafe water, and proximity to canals used as the main drainage for rain and waste water. Cholera vaccine uptake was significantly lower in the high risk areas compared to low risk areas. Conclusion The study shows that even a parsimonious model like GAM predicts high risk areas where cholera outbreaks largely occurred. This is useful for indicating where interventions would be effective in controlling the disease risk. Data showed that vaccination decreased the risk of infection. Overall, the GAM-based risk map is useful for policymakers, especially those from countries where cholera remains to be endemic with periodic outbreaks.