Browsing by Author "Coombs, Joseph J."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Comparative Analysis of Regions with Distorted Segregation in Three Diploid Populations of PotatoManrique-Carpintero, Norma C.; Coombs, Joseph J.; Veilleux, Richard E.; Buell, C. Robin; Douches, David S. (2016-08-09)Genes associated with gametic and zygotic selection could underlie segregation distortion, observed as alterations of expected Mendelian genotypic frequencies in mapping populations. We studied highly dense genetic maps based on single nucleotide polymorphisms to elucidate the genetic nature of distorted segregation in potato. Three intra- and interspecific diploid segregating populations were used. DRH and D84 are crosses between the sequenced doubled monoploid DM 1-3 516 R44 Solanum tuberosum Group Phureja and either RH89-039-16 S. tuberosum or 84SD22, a S. tuberosum × S. chacoense hybrid. MSX902 is an interspecific cross between 84SD22 and Ber83 S. berthaultii × 2 × species mosaic. At the 0.05 significance level, 21%, 57%, and 51% of the total markers mapped in DRH, D84, and MSX902 exhibited distorted segregation, respectively. Segregation distortion regions for DRH were located on chromosomes 9 and 12; for D84 on chromosomes 2, 3, 4, 6, 7, and 8; and on chromosomes 1, 2, 7, 9, and 12 for MSX902. In general, each population had unique segregation distortion regions and directions of distortion. Interspecific crosses showed greater levels of distorted segregation and lower recombination rates as determined from the male parents. The different genomic regions where the segregation distortion regions occurred in the three populations likely reflect unique genetic combinations producing distorted segregation.
- Genome Reduction in Tetraploid Potato Reveals Genetic Load, Haplotype Variation, and Loci Associated With Agronomic TraitsManrique-Carpintero, Norma C.; Coombs, Joseph J.; Pham, Gina M.; Laimbeer, F. Parker E.; Braz, Guilherme T.; Jiang, Jiming; Veilleux, Richard E.; Buell, C. Robin; Douches, David S. (2018-07-03)The cultivated potato (Solanum tuberosum) has a complex genetic structure due to its autotetraploidy and vegetative propagation which leads to accumulation of mutations and a highly heterozygous genome. A high degree of heterozygosity has been considered to be the main driver of fitness and agronomic trait performance in potato improvement efforts, which is negatively impacted by genetic load. To understand the genetic landscape of cultivated potato, we constructed a gynogenic dihaploid (2n = 2x = 24) population from cv. Superior, prior to development of a high-density genetic map containing 12,753 single nucleotide polymorphisms (SNPs). Common quantitative trait loci (QTL) were identified for tuber traits, vigor and height on chromosomes 2, 4, 7, and 10, while specific QTL for number of inflorescences per plant, and tuber shape were present on chromosomes 4, 6, 10, and 11. Simplex rather than duplex loci were mainly associated with traits. In general, the Q allele (main effect) detected in one or two homologous chromosomes was associated with lower mean trait values suggesting the importance of dosage allelic effects, and the presence of up to two undesired alleles in the QTL region. Loss of heterozygosity has been associated with a lower rate of fitness, yet no correlation between the percent heterozygosity and increased fitness or agronomic performance was observed. Based upon linkage phase, we reconstructed the four homologous chromosome haplotypes of cv. Superior. revealing heterogeneity throughout the genome yet nearly duplicate haplotypes occurring among the homologs of particular chromosomes. These results suggest that the potentially deleterious mutations associated with genetic load in tetraploid potato could be mitigated by multiple loci which is consistent with the theory that epistasis complicates the identification of associations between markers and phenotypic performance.
- Integration of Two Diploid Potato Linkage Maps with the Potato Genome SequenceFelcher, Kimberly J.; Coombs, Joseph J.; Massa, Alicia N.; Hansey, Candice N.; Hamilton, John P.; Veilleux, Richard E.; Buell, C. Robin; Douches, David S. (PLOS, 2012-04-27)To facilitate genome-guided breeding in potato, we developed an 8303 Single Nucleotide Polymorphism (SNP) marker array using potato genome and transcriptome resources. To validate the Infinium 8303 Potato Array, we developed linkage maps from two diploid populations (DRH and D84) and compared these maps with the assembled potato genome sequence. Both populations used the doubled monoploid reference genotype DM1-3 516 R44 as the female parent but had different heterozygous diploid male parents (RH89-039-16 and 84SD22). Over 4,400 markers were mapped (1,960 in DRH and 2,454 in D84, 787 in common) resulting in map sizes of 965 (DRH) and 792 (D84) cM, covering 87% (DRH) and 88% (D84) of genome sequence length. Of the mapped markers, 33.5% were in candidate genes selected for the array, 4.5% were markers from existing genetic maps, and 61% were selected based on distribution across the genome. Markers with distorted segregation ratios occurred in blocks in both linkage maps, accounting for 4% (DRH) and 9% (D84) of mapped markers. Markers with distorted segregation ratios were unique to each population with blocks on chromosomes 9 and 12 in DRH and 3, 4, 6 and 8 in D84. Chromosome assignment of markers based on linkage mapping differed from sequence alignment with the Potato Genome Sequencing Consortium (PGSC) pseudomolecules for 1% of the mapped markers with some disconcordant markers attributable to paralogs. In total, 126 (DRH) and 226 (D84) mapped markers were not anchored to the pseudomolecules and provide new scaffold anchoring data to improve the potato genome assembly. The high degree of concordance between the linkage maps and the pseudomolecules demonstrates both the quality of the potato genome sequence and the functionality of the Infinium 8303 Potato Array. The broad genome coverage of the Infinium 8303 Potato Array compared to other marker sets will enable numerous downstream applications.
- Retrospective View of North American Potato (Solanum tuberosum L.) Breeding in the 20th and 21st CenturiesHirsch, Candice N.; Hirsch, Cory D.; Felcher, Kimberly J.; Coombs, Joseph J.; Zarka, Dan; Van Deynze, Allen; De Jong, Walter S.; Veilleux, Richard E.; Jansky, Shelley H.; Bethke, Paul C.; Douches, David S.; Buell, C. Robin (Genetics Society of America, 2013-06-01)Cultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid, has been bred for distinct market classes, including fresh market, pigmented, and processing varieties. Breeding efforts have relied on phenotypic selection of populations developed from intra-and intermarket class crosses and introgressions of wild and cultivated Solanum relatives. To retrospectively explore the effects of potato breeding at the genome level, we used 8303 single-nucleotide polymorphism markers to genotype a 250-line diversity panel composed of wild species, genetic stocks, and cultivated potato lines with release dates ranging from 1857 to 2011. Population structure analysis revealed four subpopulations within the panel, with cultivated potato lines grouping together and separate from wild species and genetic stocks. With pairwise kinship estimates clear separation between potato market classes was observed. Modern breeding efforts have scarcely changed the percentage of heterozygous loci or the frequency of homozygous, single-dose, and duplex loci on a genome level, despite concerted efforts by breeders. In contrast, clear selection in less than 50 years of breeding was observed for alleles in biosynthetic pathways important for market class-specific traits such as pigmentation and carbohydrate composition. Although improvement and diversification for distinct market classes was observed through whole-genome analysis of historic and current potato lines, an increased rate of gain from selection will be required to meet growing global food demands and challenges due to climate change. Understanding the genetic basis of diversification and trait improvement will allow for more rapid genome-guided improvement of potato in future breeding efforts.