Browsing by Author "Cornell, Hannah D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A Green Light at the Intersection of Metal-Organic Frameworks and Drug DeliveryCornell, Hannah D. (Virginia Tech, 2022-05-20)The development of controllable drug delivery systems is crucial for reducing toxicity and minimizing off-target drug effects for patients undergoing chemotherapy. Metal–organic frameworks (MOFs) are a class of hybrid materials that have become of interest in the field of drug delivery. MOFs are composed of metal nodes and organic bridging ligands. MOFs have a wide range of desirable properties including chemical stability, high porosity, and structural tunability which have positioned them as successful drug carriers. Through judicious choice of linker, stimuli-responsive MOFs can be synthesized to achieve precise control over cargo release. Previously, our lab developed a novel light-responsive drug delivery system using a framework known as UiO-AZB (UiO= University of Oslo, AZB=4,4ʹ-azobenzenedicarboxylic acid). This MOF contains a photoswitchable azobenzene linker. Upon irradiation with ultraviolet light, the compound undergoes a structural change known as photoisomerization, resulting in degradation of the MOF structure and simultaneous release of encapsulated cargo. To improve the clinical relevance of our framework, we focus on developing synthetic methods for production of visible light-responsive azobenzene photoswitches. A green light-responsive MOF (UiO-AZB-F) containing a 4,4ʹ-(diazene-1,2- diyl)bis(3,5-difluorobenzoic acid) linker was developed as a drug delivery system for the treatment of colorectal cancer. Our work also focuses on optimizing various aspects of MOF design to maximize and diversify cargo loading and precisely control cargo release rates. A combined computational and experimental investigation of drug adsorption process reveals that the presence of solvent can significantly impact the adsorption of drug molecules within MOF pores. To address these concerns, a variety of drug loading procedures were screened to determine conditions for maximizing the loading of diverse drug cargoes. Conditions for the loading of single agents as well as chemotherapy cocktails were explored to expand the application of our delivery platform to other cancer types including lung, pancreatic, bladder and cervical. To modulate the release of cargo, a series of MOFs containing precise ratios of green light-responsive linker were synthesized to create a platform for sustained release. Remarkably, several MOF derivatives showed enhancement in drug adsorption, highlighting the important role of host–guest interactions in nanocarrier development. Holistically, this work highlights the promise of stimuli-responsive MOFs as drug delivery platforms.
- Modelling drug adsorption in metal-organic frameworks: the role of solventSose, Abhishek T.; Cornell, Hannah D.; Gibbons, Bradley J.; Burris, Ashley A.; Morris, Amanda J.; Deshmukh, Sanket A. (2021-05-20)Solvent plays a key role in biological functions, catalysis, and drug delivery. Metal-organic frameworks (MOFs) due to their tunable functionalities, porosities and surface areas have been recently used as drug delivery vehicles. To investigate the effect of solvent on drug adsorption in MOFs, we have performed integrated computational and experimental studies in selected biocompatible MOFs, specifically, UiO-AZB, HKUST-1 (or CuBTC) and NH2-MIL-53(Al). The adsorption of three drugs, namely, 5-fluorouracil (5-FU), ibuprofen (IBU), and hydroxyurea (HU) were performed in the presence and absence of the ethanol. Our computational predictions, at 1 atmospheric pressure, showed a reasonable agreement with experimental studies performed in the presence of ethanol. We find that in the presence of ethanol the drug molecules were adsorbed at the interface of solvent and MOFs. Moreover, the computationally calculated adsorption isotherms suggested that the drug adsorption was driven by electrostatic interactions at lower pressures (<10(-4) Pa). Our computational predictions in the absence of ethanol were higher compared to those in the presence of ethanol. The MOF-adsorbate interaction (U-HA) energy decreased with decrease in the size of a drug molecule in all three MOFs at all simulated pressures. At high pressure the interaction energy increases with increase in the MOFs pore size as the number of molecules adsorbed increases. Thus, our research shows the important role played by solvent in drug adsorption and suggests that it is critical to consider solvent while performing computational studies.