Browsing by Author "Cramer, Robert A. Jr."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A Sterol-Regulatory Element Binding Protein Is Required for Cell Polarity, Hypoxia Adaptation, Azole Drug Resistance, and Virulence in Aspergillus fumigatusWillger, Sven D.; Puttikamonkul, Srisombat; Kim, Kwang-Hyung; Burritt, James B.; Grahl, Nora; Metzler, Laurel J.; Barbuch, Robert; Bard, Martin; Lawrence, Christopher B.; Cramer, Robert A. Jr. (Public Library of Science, 2008-11-07)At the site of microbial infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments in which both the pathogen and host cells must survive. Currently, whether hypoxia adaptation is an important virulence attribute of opportunistic pathogenic molds is unknown. Here we report the characterization of a sterol-regulatory element binding protein, SrbA, in the opportunistic pathogenic mold, Aspergillus fumigatus. Loss of SrbA results in a mutant strain of the fungus that is incapable of growth in a hypoxic environment and consequently incapable of causing disease in two distinct murine models of invasive pulmonary aspergillosis (IPA). Transcriptional profiling revealed 87 genes that are affected by loss of SrbA function. Annotation of these genes implicated SrbA in maintaining sterol biosynthesis and hyphal morphology. Further examination of the SrbA null mutant consequently revealed that SrbA plays a critical role in ergosterol biosynthesis, resistance to the azole class of antifungal drugs, and in maintenance of cell polarity in A. fumigatus. Significantly, the SrbA null mutant was highly susceptible to fluconazole and voriconazole. Thus, these findings present a new function of SREBP proteins in filamentous fungi, and demonstrate for the first time that hypoxia adaptation is likely an important virulence attribute of pathogenic molds.
- TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogenKim, Kwang-Hyun; Willger, Sven D.; Park, Sang-Wook; Puttikamonkul, Srisombat; Grahl, Nora; Cho, Yangrae; Mukhopadhyay, Biswarup; Cramer, Robert A. Jr. (Public Library of Science, 2009-11-06)The regulation of intracellular levels of reactive oxygen species (ROS) is critical for developmental differentiation and virulence of many pathogenic fungi. In this report we demonstrate that a novel transmembrane protein, TmpL, is necessary for regulation of intracellular ROS levels and tolerance to external ROS, and is required for infection of plants by the necrotroph Alternaria brassicicola and for infection of mammals by the human pathogen Aspergillus fumigatus. In both fungi, tmpL encodes a predicted hybrid membrane protein containing an AMP-binding domain, six putative transmembrane domains, and an experimentally-validated FAD/NAD(P)-binding domain. Localization and gene expression analyses in A. brassicicola indicated that TmpL is associated with the Woronin body, a specialized peroxisome, and strongly expressed during conidiation and initial invasive growth in planta. A. brassicicola and A. fumigatus ΔtmpL strains exhibited abnormal conidiogenesis, accelerated aging, enhanced oxidative burst during conidiation, and hypersensitivity to oxidative stress when compared to wild-type or reconstituted strains. Moreover, A. brassicicola ΔtmpL strains, although capable of initial penetration, exhibited dramatically reduced invasive growth on Brassicas and Arabidopsis. Similarly, an A. fumigatus ΔtmpL mutant was dramatically less virulent than the wild-type and reconstituted strains in a murine model of invasive aspergillosis. Constitutive expression of the A. brassicicola yap1 ortholog in an A. brassicicola ΔtmpL strain resulted in high expression levels of genes associated with oxidative stress tolerance. Overexpression of yap1 in the ΔtmpL background complemented the majority of observed developmental phenotypic changes and partially restored virulence on plants. Yap1-GFP fusion strains utilizing the native yap1 promoter exhibited constitutive nuclear localization in the A. brassicicola ΔtmpL background. Collectively, we have discovered a novel protein involved in the virulence of both plant and animal fungal pathogens. Our results strongly suggest that dysregulation of oxidative stress homeostasis in the absence of TmpL is the underpinning cause of the developmental and virulence defects observed in these studies.