Browsing by Author "Crossa, J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The effect of tillage, crop rotation and residue management on maize and wheat growth and development evaluated with an optical sensorVerhulst, N.; Govaerts, Bram; Nelissen, V.; Sayre, Ken D.; Crossa, J.; Raes, D.; Deckers, Jozef (Elsevier B.V., 2011)Crop growth and development as well as yield are the result of the efficiency of the chosen agricultural management system within the boundaries of the agro-ecological environment. End-of-season yield results do not permit the evaluation of within-season management interactions with the production environment and do not allow for full understanding of the management practice applied. Crop growth and development were measured during the 2004, 2006 and 2008 crop cycles with an optical handheld NDVI sensor for all plots of the different management treatments of a long-term (since 1991) sustainability trial in the highlands of Mexico. Cropping systems varying in (1) tillage (conventional vs. zero tillage); (2) residue management (retention vs. removal); (3) rotation (monocropping vs. a maize [Zea mays L.]/wheat [Triticum aestivum L.] rotation) were compared. The NDVI-handheld sensor was evaluated as a tool to monitor crop growth and development and was found to be an excellent tool for this purpose. There was a strong relation between NDVI and biomass accumulation of maize and wheat. The measurement with the handheld sensor was non-destructive and fast so that a representative plot area could be measured easily and time-efficiently. Zero tillage induced different crop growth dynamics over time compared to conventional tillage. Zero tillage with residue retention is characterized by a slower initial crop growth, compensated for by an increased growth in the later stages, positively influencing final grain yield. Also crop rotation influenced early crop growth, with lower NDVI values for crops sown after wheat than crops after maize. Zero tillage with residue removal had low NDVI values throughout the growing season. Zero tillage with retention of crop residues results in time efficient use of resources, as opposed to conventional tillage, regardless of residue management, and zero tillage with residue removal. The results indicated that different tillage, rotation and residue management practices influence crop growth and development. It is important to monitor and understand crop growth under different management systems to select the right varieties and adjust timing and practice of input supply (fertilizer, irrigation etc.) in a holistic way in each cropping system. (CAB Abstract)
- Wheat yield and tillage-straw management system × year interaction explained by climatic co-variables for an irrigated bed planting system in northwestern MexicoVerhulst, N.; Sayre, Ken D.; Vargas, M.; Crossa, J.; Deckers, Jozef; Raes, D.; Govaerts, Bram (Elsevier B.V., 2011)Wheat is an important food and income source and estimated demand for wheat in the developing world is projected to increase substantially. The objectives of this study were to gain insight into (i) the effect of tillage-straw system on yield and yield components (number of grains per meter squared and thousand kernel weight), (ii) the relation between climatic conditions and yield and yield components, (iii) the explanation of tillage-straw system × year interaction for yield and yield components by climatic co-variables. Wheat grain yield and yield components were measured in a long-term trial established in 1992 under irrigated, arid conditions in northwestern Mexico. Five tillage-straw management systems (conventionally tilled raised beds [CTB] with straw incorporated and permanent raised beds [PB] with straw burned, removed, partly retained or fully retained) were compared for a wheat-maize rotation. Daily climatic data were averaged over six periods corresponding approximately to advancing wheat growth stages. The PB-straw retained and PB-straw removed had the highest yields (average yield of 7.31 and 7.24 t ha-1, respectively) and grains per m2. The PB-straw burned had the lowest yield (average yield of 6.65 t ha-1) and grains per m2, but the highest thousand kernel weight. Maximum temperature was positively correlated to final grain yield during tillering and head differentiation, but was negatively correlated to thousand kernel weight during grain-filling. For the tillage-straw system year interaction, three groups of management systems were distinguished for yield and grains per m2: PB-straw burned, CTB-straw incorporated and PB where straw is not burned. The CTB-straw incorporated had a positive interaction with year in favorable years with high radiation and evapotranspiration. The PB-straw burned was relatively more affected by excess water conditions and showed positive interactions in years with high relative humidity. The PB-straw retained was the most stable in different climatic conditions, indicating that this management system could contribute to maintaining wheat yield in a changing climate scenario. (Cab Abstracts)