Browsing by Author "Cui, Xiaolei"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Application of Comprehensive Evaluation in New-Product-Development Evaluation: The Case of Landscape-Architectural Outdoor Wooden FurnishingCui, Xiaolei; Ge, Mengting; Shen, Xiwei (MDPI, 2022-09-23)Successful new product development (NPD) is critical for modern outdoor wooden furnishing (OWF) manufacturing companies to achieve competitive success, since current users have the serious requirements of aesthetics, materials and environmental quality. Identifying the competitive performance of a product in development is an effective means to minimize the risk of failure. However, the literature reviews of the comprehensive evaluation (CE) model for OWF NPD are very rare. In this study, the CE method that applies three steps, which include constructing evaluation criteria, establishing a trapezoidal fuzzy analytic hierarchy process (AHP) and proposing a CE model is applied to assess the performance of a product in development and to minimize the risk of product failure in the market. The study aims to propose a CE approach for OWF NDP, which utilizes multiple methods that incorporate a literature review, questionnaire, Delphi method and fuzzy trapezoidal AHP. Finally, an integrated CE model is proposed to measure the competitive performance of NPD. A case study of a series of OWF in Harbin Pingfang Park, China is presented to illustrate the feasibility of the model. The result demonstrates that the proposed method predicts the performance of a product in development objectively and comprehensively. This evaluation method, being an assessment tool, can help designers and decision makers make better decisions and will predict the competitive performance of a product so as to reduce the risk of economic losses, not merely depending on previous experience and personal expectation.
- Examining the Microclimate Pattern and Related Spatial Perception of the Urban Stormwater Management Landscape: The Case of Rain GardensGe, Mengting; Huang, Yang; Zhu, Yifanzi; Kim, Mintai; Cui, Xiaolei (MDPI, 2023-07-12)This study examines the microclimate pattern and related spatial perception of urban green stormwater infrastructure (GSI) and the stormwater management landscape, using rain gardens as a case study. It investigates the relationship between different rain garden design factors, such as scale, depth, and planting design, and their effects on microclimate patterns and human spatial perception. Taking an area in Blacksburg, Virginia, as the study site, twelve rain garden design scenarios are generated by combining different design factors. The potential air temperature, relative humidity, and wind speed/direction are analyzed through computational simulation. Additionally, feelings of comfort, the visual beauty of the landscape, and the overall favorite are used as an evaluation index to investigate people’s perception of various rain garden design options. The study found that a multilayer and complex planting design can add more areas with moderate temperature and higher humidity. It also significantly improves people’s subjective perception of a rain garden. Furthermore, a larger scale rain garden can make people feel more comfortable and improve the visual beauty of the landscape, highlighting the importance of designing larger and recreational bioretention cells in GSI systems. Regarding depth, a relatively flatter rain garden with a complex planting design can bring stronger air flow and achieve better visual comfort and visual beauty. Overall, by examining the microclimate pattern and related perception of rain gardens, this study provides insight into better rain garden design strategies for the urban stormwater management landscape. It explores the potential of rain garden design in urban GSI and responds to climate change.