Browsing by Author "Cutulle, Matthew"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Implementing Digital Multispectral 3D Scanning Technology for Rapid Assessment of Hemp (Cannabis sativa L.) Weed Competitive TraitsSingh, Gursewak; Slonecki, Tyler; Wadl, Philip; Flessner, Michael; Sosnoskie, Lynn; Hatterman-Valenti, Harlene; Gage, Karla; Cutulle, Matthew (MDPI, 2024-06-28)The economic significance of hemp (Cannabis sativa L.) as a source of grain, fiber, and flower is rising steadily. However, due to the lack of registered herbicides effective in hemp cultivation, growers have limited weed management options. Plant height, biomass, and canopy architecture may affect crop–weed competition. Greenhouse experiments conducted at the joint Clemson University Coastal Research and Education Center and USDA-ARS research facility at Charleston, SC, USA used 27 hemp varieties, grown under controlled temperature and light conditions. Weekly plant scans using a digital multispectral phenotyping system, integrated with machine learning algorithms of the PlantEye F500 instrument, (Phenospex, Heerlen, Netherlands) captured high-resolution 3D models and spectral data of the plants. Manual and scanner-based measurements were validated and analyzed using statistical methods to assess plant growth and morphology. This study included validation tests showing a significant correlation (p < 0.001) between digital and manual measurements (R2 = 0.89 for biomass, R2 = 0.94 for height), indicating high precision. The use of 3D multispectral scanning significantly reduces the time-intensive nature of manual measurements, allowing for a more efficient assessment of morphological traits. These findings suggest that digital phenotyping can enhance integrated weed management strategies and improve hemp crop productivity by facilitating the selection of competitive hemp varieties.
- Occurrence and management of herbicide resistance in annual vegetable production systems in North AmericaBoyd, Nathan S.; Moretti, Marcelo L.; Sosnoskie, Lynn M.; Singh, Vijay; Kanissery, Ramdas; Sharpe, Shaun; Besançon, Thierry; Culpepper, Stanley; Nurse, Robert; Hatterman-Valenti, Harlene; Mosqueda, Elizabeth; Robinson, Darren; Cutulle, Matthew; Sandhu, Ravneet (Cambridge University Press, 2022-09-05)Herbicide resistance has been studied extensively in agronomic crops across North America but is rarely examined in vegetables. It is widely assumed that the limited number of registered herbicides combined with the adoption of diverse weed management strategies in most vegetable crops effectively inhibits the development of resistance. It is difficult to determine whether resistance is truly less common in vegetable crops or whether the lack of reported cases is due to the lack of resources focused on detection. This review highlights incidences of resistance that are thought to have arisen within vegetable crops. It also includes situations in which herbicide-resistant weeds were likely selected for within agronomic crops but became a problem when vegetables were grown in sequence or in adjacent fields. Occurrence of herbicide resistance can have severe consequences for vegetable growers, and resistance management plans should be adopted to limit selection pressure. This review also highlights resistance management techniques that should slow the development and spread of herbicide resistance in vegetable crops.
- Persistence of Overseeded Cool-Season Grasses in Bermudagrass TurfSerensits, Thomas; Cutulle, Matthew; Derr, Jeffrey F. (Hindawi, 2011-11-02)Cool-season grass species are commonly overseeded into bermudagrass turf for winter color. When the overseeded grass persists beyond the spring; however, it becomes a weed. The ability of perennial ryegrass, Italian (annual) ryegrass, intermediate ryegrass, and hybrid bluegrass to persist in bermudagrass one year after seeding was determined. Perennial ryegrass, intermediate ryegrass, and Italian ryegrass produced acceptable ground cover in the spring after fall seeding. Hybrid bluegrass did not establish well, resulting in unacceptable cover. Perennial ryegrass generally persisted the most one year after seeding, either because of summer survival of plants or because of new germination the following fall. Plant counts one year after seeding were greater in the higher seeding rate treatment compared to the lower seeding treatment rate of perennial ryegrass, suggesting new germination had occurred. Plant counts one year after seeding plots with intermediate ryegrass or Italian ryegrass were attributed primarily to latent germination and not summer survival. Applications of foramsulfuron generally did not prevent overseeded species stand one year after seeding, supporting the conclusion of new germination. Although quality is less with intermediate ryegrass compared to perennial ryegrass, it transitions out easier than perennial ryegrass, resulting in fewer surviving plants one year later.