Browsing by Author "Dabiri, Sina"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Application of Deep Learning in Intelligent Transportation SystemsDabiri, Sina (Virginia Tech, 2019-02-01)The rapid growth of population and the permanent increase in the number of vehicles engender several issues in transportation systems, which in turn call for an intelligent and cost-effective approach to resolve the problems in an efficient manner. A cost-effective approach for improving and optimizing transportation-related problems is to unlock hidden knowledge in ever-increasing spatiotemporal and crowdsourced information collected from various sources such as mobile phone sensors (e.g., GPS sensors) and social media networks (e.g., Twitter). Data mining and machine learning techniques are the major tools for analyzing the collected data and extracting useful knowledge on traffic conditions and mobility behaviors. Deep learning is an advanced branch of machine learning that has enjoyed a lot of success in computer vision and natural language processing fields in recent years. However, deep learning techniques have been applied to only a small number of transportation applications such as traffic flow and speed prediction. Accordingly, my main objective in this dissertation is to develop state-of-the-art deep learning architectures for resolving the transport-related applications that have not been treated by deep learning architectures in much detail, including (1) travel mode detection, (2) vehicle classification, and (3) traffic information system. To this end, an efficient representation for spatiotemporal and crowdsourced data (e.g., GPS trajectories) is also required to be designed in such a way that not only be adaptable with deep learning architectures but also contains efficient information for solving the task-at-hand. Furthermore, since the good performance of a deep learning algorithm is primarily contingent on access to a large volume of training samples, efficient data collection and labeling strategies are developed for different data types and applications. Finally, the performance of the proposed representations and models are evaluated by comparing to several state-of-the-art techniques in literature. The experimental results clearly and consistently demonstrate the superiority of the proposed deep-learning based framework for each application.
- Semi-Supervised Deep Learning Approach for Transportation Mode Identification Using GPS Trajectory DataDabiri, Sina (Virginia Tech, 2018-12-11)Identification of travelers' transportation modes is a fundamental step for various problems that arise in the domain of transportation such as travel demand analysis, transport planning, and traffic management. This thesis aims to identify travelers' transportation modes purely based on their GPS trajectories. First, a segmentation process is developed to partition a user's trip into GPS segments with only one transportation mode. A majority of studies have proposed mode inference models based on hand-crafted features, which might be vulnerable to traffic and environmental conditions. Furthermore, the classification task in almost all models have been performed in a supervised fashion while a large amount of unlabeled GPS trajectories has remained unused. Accordingly, a deep SEmi-Supervised Convolutional Autoencoder (SECA) architecture is proposed to not only automatically extract relevant features from GPS segments but also exploit useful information in unlabeled data. The SECA integrates a convolutional-deconvolutional autoencoder and a convolutional neural network into a unified framework to concurrently perform supervised and unsupervised learning. The two components are simultaneously trained using both labeled and unlabeled GPS segments, which have already been converted into an efficient representation for the convolutional operation. An optimum schedule for varying the balancing parameters between reconstruction and classification errors are also implemented. The performance of the proposed SECA model, trip segmentation, the method for converting a raw trajectory into a new representation, the hyperparameter schedule, and the model configuration are evaluated by comparing to several baselines and alternatives for various amounts of labeled and unlabeled data. The experimental results demonstrate the superiority of the proposed model over the state-of-the-art semi-supervised and supervised methods with respect to metrics such as accuracy and F-measure.