Browsing by Author "Dangle, Chandler Lipham"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Efficacy of operational stream crossing best management practices on truck roads and skid trails in the Mountains, Piedmont, and Coastal Plain of VirginiaDangle, Chandler Lipham (Virginia Tech, 2018-06-08)Forestry best management practices (BMPs) programs were developed by individual states in response to the Clean Water Act in order to protect water quality during and after timber harvests. Our research goals are to compare BMP implementation at stream crossings by region and road type in Virginia and to quantify effectiveness of BMPs by developing hypothetical upgrades and determining upgrade costs. Stream crossings (75 truck, 79 skidder) sampled for BMP implementation were on operational harvests conducted in 2016, from the Mountains, Piedmont, and Coastal Plain of Virginia. Erosion rates of stream crossing approaches were modeled using the Universal Soil Loss Equation modified for forest lands (USLE-Forest) and Water Erosion Prediction Project (WEPP) methodologies. Implementation ratings (BMP-, BMP-standard, BMP+) were developed to characterize crossings with respect to state implementation standards. Costs for upgrading crossings to a higher BMP category were estimated by adjusting cover percentages and approach lengths. Sixty-three percent of stream crossings were classified as BMP-standard, with an average erosion rate of 7.6 Mg/ha/yr; 25% of crossings were classified as BMP+, with an average erosion rate of 1.7 Mg/ha/yr; and 12% of crossings were classified as BMP-, with an average erosion rate of 26.2 Mg/ha/yr. Potential erosion rates decreased with increasing BMP implementation (p <0.0001). Average BMP implementation audit scores for stream crossings were 88% on skid trails and 82% on truck roads. To upgrade from a BMP- to BMP-standard, the cost-benefit ratio of dollars to tons of sediment prevented averaged $166.62/Mg for skid trails and $2274.22/Mg for truck roads. Enhancement to the BMP+ level is not economically efficient and BMP implementation at stream crossings reaches maximum efficiency at the BMP-standard level.