Browsing by Author "Dapper, Christie"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Functional annotation of serine hydrolases in the asexual erythrocytic stage of Plasmodium falciparumElahi, Rubayet; Ray, W. Keith; Dapper, Christie; Dalal, Seema; Helm, Richard F.; Klemba, Michael (2019-11-26)Enzymes of the serine hydrolase superfamily are ubiquitous, highly versatile catalysts that mediate a wide variety of metabolic reactions in eukaryotic cells, while also being amenable to selective inhibition. We have employed a fluorophosphonate-based affinity capture probe and mass spectrometry to explore the expression profile and metabolic roles of the 56-member P. falciparum serine hydrolase superfamily in the asexual erythrocytic stage of P. falciparum. This approach provided a detailed census of active serine hydrolases in the asexual parasite, with identification of 21 active serine hydrolases from ei/0 hydrolase, patatin, and rhomboid protease families. To gain insight into their functional roles and substrates, the pan-lipase inhibitor isopropyl dodecylfluorophosphonate was employed for competitive activity-based protein profiling, leading to the identification of seven serine hydrolases with potential lipolytic activity. We demonstrated how a chemoproteomic approach can provide clues to the specificity of serine hydrolases by using a panel of neutral lipase inhibitors to identify an enzyme that reacts potently with a covalent monoacylglycerol lipase inhibitor. In combination with existing phenotypic data, our studies define a set of serine hydrolases that likely mediate critical metabolic reactions in asexual parasites and enable rational prioritization of future functional characterization and inhibitor development efforts.
- Internalization of Erythrocyte Acylpeptide Hydrolase Is Required for Asexual Replication of Plasmodium falciparumElahi, Rubayet; Dapper, Christie; Klemba, Michael (American Society for Microbiology, 2019-05-08)The human malaria parasite Plasmodium falciparum causes disease as it replicates within the host's erythrocytes. We have found that an erythrocyte serine hydrolase, acylpeptide hydrolase (APEH), accumulates within developing asexual parasites. Internalization of APEH was associated with a proteolytic event that reduced the size of the catalytic polypeptide from 80 to 55 kDa. A triazole urea APEH inhibitor, termed AA74-1, was employed to characterize the role of parasite-internalized APEH. In cell lysates, AA74-1 was a potent and highly selective inhibitor of both host erythrocyte and parasite-internalized APEH. When added to cultures of ring-stage parasites, AA74-1 was a poor inhibitor of replication over one asexual replication cycle; however, its potency increased dramatically after a second cycle. This enhancement of potency was not abrogated by the addition of exogenous isopentenyl pyrophosphate, the sole essential product of apicoplast metabolism. High-potency inhibition of parasite growth could be effected by adding AA74-1 to schizont-stage parasites, which resulted in parasite death at the early trophozoite stage of the ensuing replication cycle. Analysis of APEH inhibition in intact cultured cells revealed that host erythrocyte APEH, but not the parasite-internalized APEH pool, was inhibited by exogenous AA74-1. Our data support a model for the mode of parasiticidal activity of AA74-1 whereby sustained inactivation of host erythrocyte APEH is required prior to merozoite invasion and during parasite asexual development. Together, these findings provide evidence for an essential catalytic role for parasite-internalized APEH. IMPORTANCE Nearly half a million deaths were attributed to malaria in 2017. Protozoan parasites of the genus Plasmodium cause disease in humans while replicating asexually within the host's erythrocytes, with P. falciparum responsible for most of the mortality. Understanding how Plasmodium spp. have adapted to their unique host erythrocyte environment is important for developing malaria control strategies. Here, we demonstrate that P. falciparum coopts a host erythrocyte serine hydrolase termed acylpeptide hydrolase. By showing that the parasite requires acylpeptide hydrolase activity for replication, we expand our knowledge of host cell factors that contribute to robust parasite growth.
- Leveraging a Fluorescent Fatty Acid Probe to Discover Cell-Permeable Inhibitors of Plasmodium falciparum Glycerolipid BiosynthesisDapper, Christie; Liu, Jiapeng; Klemba, Michael (American Society for Microbiology, 2022-10)The human malaria parasite Plasmodium falciparum relies on fatty acid scavenging to supply this essential precursor of lipid synthesis during its asexual replication cycle in human erythrocytes. This dependence on host fatty acids represents a potential vulnerability that can be exploited to develop new anti-malarial therapies. A sensitive and quantitative fluorescence-based approach is presented for characterizing fatty acid acquisition and lipid biosynthesis by asexually replicating, intraerythrocytic Plasmodium falciparum. We show that a BODIPY-containing, green-fluorescent fatty acid analog is efficiently and rapidly incorporated into parasite neutral lipids and phospholipids. Prelabeling with a red-fluorescent ceramide analog permits normalization and enables reliable quantitation of glycerolipid labeling. Inhibition of lipid labeling by competition with natural fatty acids and by acyl-coenzyme A synthetase and diacylglycerol acyltransferase inhibitors demonstrates that the fluorescent fatty acid probe is acquired, activated, and transferred to lipids through physiologically-relevant pathways. To assess its utility in discovering small molecules that block parasite lipid biosynthesis, the lipid labeling assay was used to screen a panel of mammalian lipase inhibitors and a selection of compounds from the "Malaria Box" anti-malarial collection. Several compounds were identified that inhibited the incorporation of the fluorescent fatty acid probe into lipids in cultured parasites at low micromolar concentrations. Two contrasting profiles of suppression of neutral lipid and phospholipid synthesis were observed, which implies the inhibition of distinct pathways. IMPORTANCE The human malaria parasite Plasmodium falciparum relies on fatty acid scavenging to supply this essential precursor of lipid synthesis during its asexual replication cycle in human erythrocytes. This dependence on host fatty acids represents a potential vulnerability that can be exploited to develop new anti-malarial therapies. The quantitative experimental approach described here provides a platform for simultaneously interrogating multiple facets of lipid metabolism- fatty acid uptake, fatty acyl-CoA synthesis, and neutral lipid and phospholipid biosynthesis- and of identifying cell-permeable inhibitors that are active in situ.