Browsing by Author "Davidson, Rebecca M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Environmental Nontuberculous Mycobacteria in the Hawaiian IslandsHonda, Jennifer R.; Hasan, Nabeeh A.; Davidson, Rebecca M.; Williams, Myra D.; Epperson, L. Elaine; Reynolds, Paul R.; Smith, Terry; Iakhiaeva, Elena; Bankowski, Matthew J.; Wallace, Richard J. Jr.; Chan, Edward D.; Falkinham, Joseph O. III; Strong, Michael (PLOS, 2016-10)Lung disease caused by nontuberculous mycobacteria (NTM) is an emerging infectious disease of global significance. Epidemiologic studies have shown the Hawaiian Islands have the highest prevalence of NTM lung infections in the United States. However, potential environmental reservoirs and species diversity have not been characterized. In this cross-sectional study, we describe molecular and phylogenetic comparisons of NTM isolated from 172 household plumbing biofilms and soil samples from 62 non-patient households and 15 respiratory specimens. Although non-uniform geographic sampling and availability of patient information were limitations, Mycobacterium chimaera was found to be the dominant species in both environmental and respiratory specimens. In contrast to previous studies from the continental U.S., no Mycobacterium avium was identified. Mycobacterium intracellulare was found only in respiratory specimens and a soil sample. We conclude that Hawai'i's household water sources contain a unique composition of Mycobacterium avium complex (MAC), increasing our appreciation of NTM organisms of pulmonary importance in tropical environments.
- The transcriptional network of WRKY53 in cereals links oxidative responses to biotic and abiotic stress inputsVan Eck, Leon; Davidson, Rebecca M.; Wu, Shuchi; Zhao, Bingyu Y.; Botha, Anna-Maria; Leach, Jan E.; Lapitan, Nora L. V. (Springer, 2014-01-01)The transcription factor WRKY53 is expressed during biotic and abiotic stress responses in cereals, but little is currently known about its regulation, structure and downstream targets. We sequenced the wheat ortholog TaWRKY53 and its promoter region, which revealed extensive similarity in gene architecture and cis-acting regulatory elements to the rice ortholog OsWRKY53, including the presence of stress-responsive abscisic acid-responsive elements (ABRE) motifs and GCC-boxes. Four proteins interacted with the WRKY53 promoter in yeast one-hybrid assays, suggesting that this gene can receive inputs from diverse stress-related pathways such as calcium signalling and senescence, and environmental cues such as drought and ultraviolet radiation. The Ser/Thr receptor kinase ORK10/LRK10 and the apoplastic peroxidase POC1 are two downstream targets for regulation by the WRKY53 transcription factor, predicted based on the presence of W-box motifs in their promoters and coregulation with WRKY53, and verified by electrophoretic mobility shift assay (EMSA). Both ORK10/LRK10 and POC1 are upregulated during cereal responses to pathogens and aphids and important components of the oxidative burst during the hypersensitive response. Taken with our yeast two-hybrid assay which identified a strong protein-protein interaction between microsomal glutathione S-transferase 3 and WRKY53, this implies that the WRKY53 transcriptional network regulates oxidative responses to a wide array of stresses. © 2014 The Author(s).