Browsing by Author "Davis, Ty C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Propionate Affects Insulin Signaling and Progesterone Profiles in Dairy HeifersBedford, Andrea; Beckett, Linda; Hardin, K.; Dias, Nicholas W.; Davis, Ty C.; Mercadante, Vitor R. G.; Ealy, Alan D.; White, Robin R. (Nature Publishing Group, 2018-12-04)Emerging data highlighting gut microbiome influences on health support evaluation of how microbial fermentation end-products influence postabsorptive systems. This study aimed to investigate the effect of increased propionate status on progesterone profiles and insulin sensitivity in dairy heifers. Eleven Holstein heifers, synchronized in estrus, were assigned to one of two continuous, 5-day IV treatments: sodium propionate (PRO; n = 5) or saline (CON; n = 6). These infusions culminated in a hyperglycemic clamp with daily blood samples for an additional 7 days. Plasma propionate concentrations increased over the first 9 h in PRO heifers, then decreased until day 3 when they matched CON heifers. Maximum plasma progesterone concentrations tended to be greater in PRO heifers than CON heifers (4.19 vs 3.73 ng/mL; P = 0.087). Plateau insulin concentrations in CON animals were significantly greater than those in PRO animals (249.4 ± 25.1 vs 123.9 ± 35.8; P = 0.008) with a trend for an increased insulin sensitivity index in PRO heifers compared to CON heifers (P = 0.06). These changes in plasma propionate clearance leading to increased progesterone response and changes in insulin sensitivity suggest a role for SCFA metabolism in reproductive hormone regulation.
- Short-Term Adaptation of Dairy Cattle Production Parameters to Individualized Changes in Dietary Top DressPrice, Tanner P.; Souza, Vinicius C.; Liebe, Douglas M.; Elett, Mark D.; Davis, Ty C.; Gleason, Claire B.; Daniels, Kristy M.; White, Robin R. (MDPI, 2021-12-01)Immediate and short-term changes in diet composition can support individualized, real-time interventions in precision dairy production systems, and might increase feed efficiency (FE) of dairy cattle in the short-term. The objective of this study was to determine immediate and short-term effects of changes in diet composition on production parameters of dairy cattle fed varying amounts of top dressed commodities. A 4 × 4 replicated Latin square design was used to evaluate responses of twenty-four Holstein cows fed either no top dress (Control) or increasing amounts of: corn grain (CG), soybean meal (SBM), or chopped mixed grass hay (GH) top dressed on a total mixed ration (TMR) over four, 9-day periods. Throughout each period, top dressed commodities were incrementally increased, providing 0% to 20% of calculated net energy of lactation (NEL ) intake. Measured production responses were analyzed for each 9-d period using a mixed-effects model considering two different time ranges. Samples collected from d 3 and 4 and from d 7 and 8 of each period were averaged and used to reflect “immediate” vs. “short-term” responses, respectively. In the immediate response time frame, control fed cows had lower milk yield, milk fat yield, and milk true protein yield than CG and SBM supplemented animals but similar responses to GH supplemented animals. Milk fat and protein percentages were not affected by top dress type in the immediate term. In the short-term response time-frame, GH supplemented animals had lower DMI and milk fat yield than all other groups. Control and GH supplemented cows had lower milk yield than CG and SBM fed cows. In the immediate response time frame, FE of SBM supplemented cows was superior to other groups. In the short-term time frame, FE of GH and SBM groups was improved over the control group. Results suggest that lactating dairy cows show rapid performance responses to small (<20% NEL ) changes in dietary composition, which may be leveraged within automated precision feeding systems to optimize efficiency of production. Before this potential can be realized, further research is needed to examine integration of such strategies into automatic feeding systems and downstream impacts on individual animal FE and farm profitability.