Browsing by Author "De, Shuvodeep"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Lightweight Chassis Design of Hybrid Trucks Considering Multiple Road Conditions and ConstraintsDe, Shuvodeep; Singh, Karanpreet; Seo, Junhyeon; Kapania, Rakesh K.; Ostergaard, Erik; Angelini, Nicholas; Aguero, Raymond (MDPI, 2020-12-28)The paper describes a fully automated process to generate a shell-based finite element model of a large hybrid truck chassis to perform mass optimization considering multiple load cases and multiple constraints. A truck chassis consists of different parts that could be optimized using shape and size optimization. The cross members are represented by beams, and other components of the truck (batteries, engine, fuel tanks, etc.) are represented by appropriate point masses and are attached to the rail using multiple point constraints to create a mathematical model. Medium-fidelity finite element models are developed for front and rear suspensions and they are attached to the chassis using multiple point constraints, hence creating the finite element model of the complete truck. In the optimization problem, a set of five load conditions, each of which corresponds to a road event, is considered, and constraints are imposed on maximum allowable von Mises stress and the first vertical bending frequency. The structure is optimized by implementing the particle swarm optimization algorithm using parallel processing. A mass reduction of about 13.25% with respect to the baseline model is achieved.
- Structural Modeling and Optimization of Aircraft Wings having Curvilinear Spars and Ribs (SpaRibs)De, Shuvodeep (Virginia Tech, 2017-09-22)The aviation industry is growing at a steady rate but presently, the industry is highly dependent on fossil fuel. As the world is running out of fossil fuels and the wide-spread acceptance of climate change due to carbon emissions, both the governments and industry are spending a significant amount of resources on research to reduce the weight and hence the fuel consumption of commercial aircraft. A commercial fixed-wing aircraft wing consists of spars which are beams running in span-wise direction, carrying the flight loads and ribs which are panels with holes attached to the spars to preserve the outer airfoil shape of the wing. Kapania et al. at Virginia Tech proposed the concept of reducing the weight of aircraft wing using unconventional design of the internal structure consisting of curvilinear spars and ribs (known as SpaRibs) for enhanced performance. A research code, EBF3GLWingOpt, was developed by the Kapania Group. at Virginia Tech to find the best configuration of SpaRibs in terms of weight saving for given flight conditions. However, this software had a number of limitations and it can only create and analyze limited number of SpaRibs configurations. In this work, the limitations of the EBF3GLWingOpt code has been identified and new algorithms have been developed to make is robust and analyze larger number of SpaRibs configurations. The code also has the capability to create cut-outs in the SpaRibs for passage of fuel pipes and wirings. This new version of the code can be used to find best SpaRibs configuration for multiple objectives such as reduction of weight and increase flutter velocity. The code is developed in Python language and it has parallel computational capabilities. The wing is modeled using commercial FEA software, MSC.PATRAN and analyzed using MSC.NASTRAN which are from within EBF3GLWingOpt. Using this code a significant weight reduction for a transport aircraft wing has been achieved.