Browsing by Author "DeLong, Edward F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Bacteriophage Distributions and Temporal Variability in the Ocean's InteriorLuo, Elaine; Aylward, Frank O.; Mende, Daniel R.; DeLong, Edward F. (American Society for Microbiology, 2017-11)Bacteriophages are numerically the most abundant DNA-containing entities in the oligotrophic ocean, yet how specific phage populations vary over time and space remains to be fully explored. Here, we conducted a metagenomic time-series survey of double-stranded DNA phages throughout the water column in the North Pacific Subtropical Gyre, encompassing 1.5 years from depths of 25 to 1,000 m. Viral gene sequences were identified in assembled metagenomic samples, yielding an estimated 172,385 different viral gene families. Viral marker gene distributions suggested that lysogeny was more prevalent at mesopelagic depths than in surface waters, consistent with prior prophage induction studies using mitomycin C. A total of 129 ALOHA viral genomes and genome fragments from 20 to 108 kbp were selected for further study, which represented the most abundant phages in the water column. Phage genotypes displayed discrete population structures. Most phages persisted throughout the time-series and displayed a strong depth structure that mirrored the stratified depth distributions of co-occurring bacterial taxa in the water column. Mesopelagic phages were distinct from surface water phages with respect to diversity, gene content, putative life histories, and temporal persistence, reflecting depth-dependent differences in host genomic architectures and phage reproductive strategies. The spatiotemporal distributions of the most abundant open-ocean bacteriophages that we report here provide new insight into viral temporal persistence, life history, and virus-host-environment interactions throughout the open-ocean water column. IMPORTANCE The North Pacific Subtropical Gyre represents one of the largest biomes on the planet, where microbial communities are central mediators of ecosystem dynamics and global biogeochemical cycles. Critical members of these communities are the viruses of marine bacteria, which can alter microbial metabolism and significantly influence their survival and productivity. To better understand these viral assemblages, we conducted genomic analyses of planktonic viruses over a seasonal cycle to ocean depths of 1,000 m. We identified 172,385 different viral gene families and 129 unique virus genotypes in this open-ocean setting. The spatiotemporal distributions of the most abundant open-ocean viruses that we report here provide new insights into viral temporal variability, life history, and virus-host-environment interactions throughout the water column.
- Diel cycling and long-term persistence of viruses in the ocean’s euphotic zoneAylward, Frank O.; Boeuf, Dominique; Mende, Daniel R.; Wood-Charlson, Elisha M.; Vislova, Alice; Eppley, John M.; Romano, Anna E.; DeLong, Edward F. (National Academy of Sciences, 2017-09-17)Viruses are fundamental components of marine microbial communities that significantly influence oceanic productivity, biogeochemistry, and ecosystem processes. Despite their importance, the temporal activities and dynamics of viral assemblages in natural settings remain largely unexplored. Here we report the transcriptional activities and variability of dominant dsDNA viruses in the open ocean’s euphotic zone over daily and seasonal timescales. While dsDNA viruses exhibited some fluctuation in abundance in both cellular and viral size fractions, the viral assemblage was remarkably stable, with the most abundant viral types persisting over many days. More extended time series indicated that long-term persistence (>1 y) was the rule for most dsDNA viruses observed, suggesting that both core viral genomes as well as viral community structure were conserved over interannual periods. Viral gene transcription in host cell assemblages revealed diel cycling among many different viral types. Most notably, an afternoon peak in cyanophage transcriptional activity coincided with a peak in Prochlorococcus DNA replication, indicating coordinated diurnal coupling of virus and host reproduction. In aggregate, our analyses suggested a tightly synchronized diel coupling of viral and cellular replication cycles in both photoautotrophic and heterotrophic bacterial hosts. A surprising consequence of these findings is that diel cycles in the ocean’s photic zone appear to be universal organizing principles that shape ecosystem dynamics, ecological interactions, and biogeochemical cycling of both cellular and acellular community components.