Browsing by Author "DeMoss, Joshua Andrew"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Drag Measurements on an Ellipsoidal BodyDeMoss, Joshua Andrew (Virginia Tech, 2007-08-21)A drag study was conducted on an oblate ellipsoid body in the Virginia Tech Stability Wind Tunnel. Two-dimensional wake surveys were taken with a seven-hole probe and an integral momentum method was applied to the results to calculate the drag on the body. Several different model configurations were tested; these included the model oriented at a 0° and 10° angle of attack with respect to the oncoming flow. For both angles, the model was tested with and without flow trip strips. At the 0° angle of attack orientation, data were taken at a speed of 44 m/s. Data with the model at a 10° angle of attack were taken at 44 m/s and 16 m/s. The high speed flow corresponded to a length-based Reynolds number of about 4.3 million; the low speed flow gave a Reynolds number of about 1.6 million. The results indicated that the length-squared drag coefficients ranged from around 0.0026 for the 0° angle of attack test cases and 0.0035 for the 10° angle of attack test cases. The 10° angle of attack cases had higher drag due to the increase in the frontal profile area of the model and the addition of induced drag. The flow trip strips appeared to have a tiny effect on the drag; a slight increase in drag coefficient was seen by their application but it was not outside of the uncertainty in the calculation. At the lower speed, uncertainties in the calculation were so high that the drag results could not be considered with much confidence, but the drag coefficient did decrease from the higher Reynolds number cases. Uncertainty in the drag calculations derived primarily from spatial fluctuations of the mean velocity and total pressure in the wake profile; uncertainty was estimated to be about 16% or less for the 44 m/s test cases.
- Skin Friction and Cross-flow Separation on an Ellipsoidal Body During Constant Yaw Turns and a Pitch-up Maneuver with Roll OscillationDeMoss, Joshua Andrew (Virginia Tech, 2010-09-09)The skin friction and cross-flow separation location on a non-body-of-revolution (non-BOR) ellipsoidal model performing constant-yaw turns and a pitch-up maneuver, each with roll oscillation were studied for the first time. The detailed, low uncertainty, flow topology data provide an extensive experimental database on the flow over non-BOR hull shapes that does not exist anywhere else in the world and serves as a crucial tool for computational validation. The ellipsoidal model was mounted on a roll oscillation machine in the Virginia Tech Stability Wind Tunnel slotted wall test section. Hot-film sensors with constant temperature anemometers provided skin friction magnitudes on the body's surface for thirty-three steady flow model orientations and three unsteady maneuvers at a constant Reynolds number of 2.5 million. Cross-flow separation locations on the model were determined from span-wise minima in the skin friction magnitude for both the steady orientations and unsteady maneuvers. Steady hot-film data were obtained over roll angles between ±25° in 5° increments with the model mounted at 10° and 15° yaw and at 7° pitch with respect to the flow. The roll oscillation machine was used to create a near sinusoidal unsteady roll motion between ±26° at a rate of 3 Hz, which corresponded to a non-dimensional roll period of 5.4. Unsteady data were obtained with the ellipsoidal model mounted at 10° and 15° yaw and at 7° pitch during the rolling maneuver. Cross-flow separation was found to dominate the leeside flow of the model for all orientations. For the yaw cases, the separation location moved progressively more windward and inboard as the flow traveled downstream. Increasing the model roll or yaw angle increased the adverse pressure gradient on the leeward side, creating stronger cross-flow separation that began further upstream and migrated further windward on the model surface. For the pitch flow case, the cross-flow separation remained straight as the flow moved axially downstream. The strongest pitch cross-flow separation was observed at the most negative roll angle and dissipated, moving further downstream and inboard as the model's roll angle was increased. The unsteady flow maneuvers exhibited the same flow topology observed in the quasi-steady conditions. However, the unsteady skin friction and separation locations lagged their quasi-steady counterparts at equivalent roll angles during the oscillation cycle. A first order time lag model and sinusoidal fit to the separation location data quantified the time lags that were observed.