Browsing by Author "Deng, Kuangyin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Coherent Multispin Exchange Coupling in a Quantum-Dot Spin ChainQiao, Haifeng; Kandel, Yadav P.; Deng, Kuangyin; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Barnes, Edwin Fleming; Nichol, John M. (2020-07-08)Heisenberg exchange coupling between neighboring electron spins in semiconductor quantum dots provides a powerful tool for quantum information processing and simulation. Although so far unrealized, extended Heisenberg spin chains can enable long-distance quantum information transfer and the generation of nonequilibrium quantum states. In this work, we implement simultaneous, coherent exchange coupling between all nearest-neighbor pairs of spins in a quadruple quantum dot. The main challenge in implementing simultaneous exchange couplings is the nonlinear and nonlocal dependence of the exchange couplings on gate voltages. Through a combination of electrostatic simulation and theoretical modeling, we show that this challenge arises primarily due to lateral shifts of the quantum dots during gate pulses. Building on this insight, we develop two models that can be used to predict the confinement gate voltages for a desired set of exchange couplings. Although the model parameters depend on the number of exchange couplings desired (suggesting that effects in addition to lateral wave-function shifts are important), the models are sufficient to enable simultaneous and independent control of all three exchange couplings in a quadruple quantum dot. We demonstrate two-, three-, and four-spin exchange oscillations, and our data agree with simulations.
- Exchange and superexchange interactions in quantum dot systemsDeng, Kuangyin (Virginia Tech, 2021-02-10)Semiconductor quantum dot systems offer a promising platform for quantum computation. And these quantum computation candidates are normally based on spin or charge properties of electrons. In these systems, we focus on quantum computation based on electron spins since these systems has good scalability, long coherence times, and rapid gate operations. And this thesis focuses on building a theoretical description of quantum dot systems and the link between theory and experiments. In many quantum dot systems, exchange interactions are the primary mechanism used to control spins and generate entanglement. And exchange energies are normally positive, which limits control flexibility. However, recent experiments show that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin triplet-like rather than singlet-like ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both triplet-like and singlet-like ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that triplet-like ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons. Recent experiments also show the potential to utilize large quantum dots to mediate superexchange interaction and generate entanglement between distant spins. This opens up a possible mechanism for selectively coupling pairs of remote spins in a larger network of quantum dots. Taking advantage of this opportunity requires a deeper understanding of how to control superexchange interactions in these systems. Here, we consider a triple-dot system arranged in linear and triangular geometries. We use CI calculations to investigate the interplay of superexchange and nearest-neighbor exchange interactions as the location, detuning, and electron number of the mediating dot are varied. We show that superexchange processes strongly enhance and increase the range of the net spin-spin exchange as the dots approach a linear configuration. Furthermore, we show that the strength of the exchange interaction depends sensitively on the number of electrons in the mediator. Our results can be used as a guide to assist further experimental efforts towards scaling up to larger, two-dimensional quantum dot arrays.