Browsing by Author "Dettmann, Garret T."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Review and Synthesis of Estimation Strategies to Meet Small Area Needs in Forest InventoryDettmann, Garret T.; Radtke, Philip J.; Coulston, John W.; Green, P. Corey; Wilson, Barry T.; Moisen, Gretchen G. (Frontiers, 2022-03-16)Small area estimation is a growing area of research for making inferences over geographic, demographic, or temporal domains smaller than those in which a particular survey data set was originally intended to be used. We aimed to review a body of literature to summarize the breadth and depth of small area estimation and related estimation strategies in forest inventory and management to-date, as well as the current state of terminology, methods, concerns, data sources, research findings, challenges, and opportunities for future work relevant to forestry and forest inventory research. Estimation methodologies explored include direct, indirect, and composite estimation within design-based and model-based inference bases. A variety of estimation methods in forestry have been applied to extensive multi-resource inventory systems like national forest inventories to increase the precision of estimates on small domains or subsets of the overall populations of interest. To avoid instability and large variances associated with small sample sizes when working with small area domains, forest inventory data are often supplemented with information from auxiliary sources, especially from remote sensing platforms and other geospatial, map-based products. Results from many studies show gains in precision compared to direct estimates based only on field inventory data. Gains in precision have been demonstrated in both project-level applications and national forest inventory systems. Potential gains are possible over varying geographic and temporal scales, with the degree of success in reducing variance also dependent on the types of auxiliary information, scale, strength of model relationships, and methodological alternatives, leaving considerable opportunity for future research and growth in small area applications for forest inventory.
- Testing a generalized leaf mass estimation method for diverse tree species and climates of the continental United StatesDettmann, Garret T.; MacFarlane, David W.; Radtke, Philip J.; Weiskittel, Aaron R.; Affleck, David L. R.; Poudel, Krishna P.; Westfall, James (Wiley, 2022-10)Estimating tree leaf biomass can be challenging in applications where predictions for multiple tree species is required. This is especially evident where there is limited or no data available for some of the species of interest. Here we use an extensive national database of observations (61 species, 3628 trees) and formulate models of varying complexity, ranging from a simple model with diameter at breast height (DBH) as the only predictor to more complex models with up to 8 predictors (DBH, leaf longevity, live crown ratio, wood specific gravity, shade tolerance, mean annual temperature, and mean annual precipitation), to estimate tree leaf biomass for any species across the continental United States. The most complex with all eight predictors was the best and explained 74%-86% of the variation in leaf mass. Consideration was given to the difficulty of measuring all of these predictor variables for model application, but many are easily obtained or already widely collected. Because most of the model variables are independent of species and key species-level variables are available from published values, our results show that leaf biomass can be estimated for new species not included in the data used to fit the model. The latter assertion was evaluated using a novel "leave-one-species-out" cross-validation approach, which showed that our chosen model performs similarly for species used to calibrate the model, as well as those not used to develop it. The models exhibited a strong bias toward overestimation for a relatively small subset of the trees. Despite these limitations, the models presented here can provide leaf biomass estimates for multiple species over large spatial scales and can be applied to new species or species with limited leaf biomass data available.