Browsing by Author "Diamond, Jacob S."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Ecohydrology and self-organization of black ash wetlandsDiamond, Jacob S. (Virginia Tech, 2019-04-19)Wetlands self-organize through reciprocal controls between vegetation and hydrology, but external disturbance may disrupt these feedbacks with consequent changes to ecosystem state. Imminent and widespread emerald ash borer (EAB) infestation throughout North America has raised concern over possible ecosystem state shifts in forested wetlands (i.e., to wetter, more herbaceous systems) and loss of forest function, calling for informed landscape-scale management strategies. In this dissertation, I use black ash wetlands as a model system to understand complex ecohydrological dynamics, and I use these dynamics to explain the self-organization of observed patterns in vegetation, hydrology, and microtopographic structure. The combined inferences from the three research chapters strongly implicate black ash trees as autogenic ecosystem engineers, who, through the process of improving their local growing conditions, cause a cascade of environmental changes that result in a unique ecosystem structure. This unique ecosystem structure is under existential threat from the invasive EAB. Through experiment, I show that loss of black ash trees to EAB induces persistent shifts in hydrology that result from reduced evapotranspiration and subsequent changes to water table regime (Chapter 2). These results suggest the potential for catastrophic shifts of black ash wetlands from forested to non-forested, marsh-like states under a do-nothing EAB management scenario. However, research presented here suggests that preemptive management of black ash wetlands can potentially mitigate loss of desirable forested conditions. Forest management to replace black ash with other wetland canopy species may be a slow and steady path towards forest maintenance, and harvesting may facilitate establishment of alternative species. In the case of preemptive harvesting of black ash, I posit that maintenance of microtopographic structure, either through leaving downed woody debris or through physical creation, is paramount to forest recovery. Microtopography in these ecosystems provides crucial relief from anaerobic stress generated by higher water tables, allowing woody species to persist on elevated microsites (e.g., 30 cm above base soil elevation). Moreover, I show that microtopography in black ash wetlands has clear structure and pattern and that its presence arises from self-organizing processes, driven by feedbacks among hydrology, biota, and soils (Chapter 3). I further show that this structured and non-random microtopography has profound influence on biogeochemical processes in black ash wetlands, controlling plant richness and biomass, and soil chemistry gradients (Chapter 4). Based on this work, I propose that structured wetland microtopography is a diagnostic feature of strongly coupled plant-water interactions, and these interactions may be important for ecosystem resilience to disturbance.
- Forested versus herbaceous wetlands: Can management mitigate ecohydrologic regime shifts from invasive emerald ash borer?Diamond, Jacob S.; McLaughlin, Daniel L.; Slesak, Robert A.; D'Amato, Anthony W.; Palik, Brian (2018-09-15)Wetlands self-organize through reciprocal controls between vegetation and hydrology, but external disturbance may disrupt these feedbacks with consequent changes to ecosystem state. Imminent and widespread emerald ash borer (EAB) infestation throughout North American forested wetlands has raised concern over possible ecosystem state shifts (i.e., wetter, more herbaceous systems) and loss of forest function, calling for informed landscape-scale management strategies. In response, we employed a large-scale manipulative study to assess the ecohydrologic response of black ash wetlands to three alternative EAB management strategies: 1) a do-nothing approach (i.e., simulated EAB infestation via tree girdling), 2) a preemptive, complete harvesting approach (i.e., clearcut), and 3) an overstory replacement approach via group selection. We analyzed six years of daily water table and evapotranspiration (ET) dynamics in six blocks comprising black ash wetlands (controls) and management strategy treatments to quantify potential for hydrologic change and subsequent recovery. In both the do-nothing approach and complete harvesting approach, we found persistent changes in hydrologic regime defined by shallower water tables and lower ET rates coupled with increased herbaceous vegetation growth, indicating ecosystem state shifts driven by vegetation-water table interactions. The do-nothing approach showed the least hydrologic recovery after five years, which we attribute to reduction in overstory transpiration as well as greater shade (via standing dead trees) that reduces open water evaporation and herbaceous layer transpiration compared to complete harvesting. We found no evidence of ecohydrologic disturbance in the overstory replacement approach, highlighting its potential as a management strategy to preserve forested wetland habitat if periodically executed over time before EAB infestation. Although the scale of potential disturbance is daunting, our findings provide a baseline assessment for forest managers to develop preemptive mitigation strategies to address the threat of EAB to ecological functions in black ash wetlands.
- Hydrologic variability in black ash wetlands: Implications for vulnerability to emerald ash borerCianciolo, Thomas R.; Diamond, Jacob S.; McLaughlin, Daniel L.; Slesak, Robert A.; D'Amato, Anthony W.; Palik, Brian J. (Wiley, 2021-04)Black ash (Fraxinus nigra) wetlands are widespread, forested landscape features in the western Great Lakes region. However, the future of these ecosystems is threatened due to impending spread of the invasive emerald ash borer (EAB), which results in tree mortality, decreased transpiration, and potential shifts to wetter, non-forested conditions. The vulnerability to such ecohydrologic shifts likely varies according to local hydrologic regimes controlled by landscape settings, but this site-dependent vulnerability and our ability to predict it is unknown. Here, we assessed vulnerability potential as a function of site hydrology in 15 undisturbed black ash wetlands from their three most common hydrogeomorphic settings in northern Minnesota: lowland, depression, and transition. Further, we used high-resolution (1-cm) surface elevation models to assess spatial variability of water levels at a subset of 10 sites. Although we observed similar ET and groundwater exchange rates among settings, lowland sites were generally drier because of elevated landscape position and greater water level drawdowns (via lower specific yield). We predict that such drier sites will exhibit greater water level increases following EAB-induced ash mortality, compared to wetter sites where open water evaporation and shallow-rooted understory transpiration will offset losses in tree transpiration. Moreover, compared to wetter sites, drier sites exhibited minimal microtopographic variation, limiting the number of elevated microsites for tree establishment and eventual canopy recovery after ash loss. These results suggest that site wetness is a simple and effective predictor of black ash wetland vulnerability to hydrologic regime change. To that end, we assessed the ability of common terrain metrics to predict site wetness, providing a potential tool to target vulnerable areas for active management efforts.
- Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlandsDiamond, Jacob S.; McLaughlin, Daniel L.; Slesak, Robert A.; Stovall, Atticus (2020-02-21)All wetland ecosystems are controlled by water table and soil saturation dynamics, so any local-scale deviation in soil elevation and thus water table position represents variability in this primary control. Wetland microtopography is the structured variability in soil elevation and is typically categorized into a binary classification of local high points (hummocks) and local low points (hollows). Although the influence of microtopography on vegetation composition and biogeochemical processes in wetlands has received attention around the globe, its role in forested wetlands is still less understood. We studied relationships among microtopography and understory vegetation communities, tree biomass, and soil chemistry in 10 black ash (Fraxinus nigra Marshall) wetlands in northern Minnesota, USA. To do so, we combined a 1 cm resolution surface elevation model generated from terrestrial laser scanning (TLS) with colocated water table, vegetation, and soil measurements. We observed that microtopography was an important structural element across sites, where hummocks were loci of greater species richness; greater midstory and canopy basal area; and higher soil concentrations of chloride, phosphorus, and base cations. In contrast, hollows were associated with higher soil nitrate and sulfate concentrations. We also found that the effect of microtopography on vegetation and soils was greater at wetter sites than at drier sites, suggesting that the distance-to-mean water table is a primary determinant of wetland biogeochemistry. These findings highlight clear controls of microtopography on vegetation and soil distributions while also supporting the notion that microtopography arises from feedbacks that concentrate biomass, soil nutrients, and productivity on microsite highs, especially in otherwise wet conditions. We therefore conclude that microtopography is a fundamental organizing structure in black ash wetlands.
- Pattern and structure of microtopography implies autogenic origins in forested wetlandsDiamond, Jacob S.; McLaughlin, Daniel L.; Slesak, Robert A.; Stovall, Atticus (European Geosciences Union, 2019-12-16)Wetland microtopography is a visually striking feature, but also critically influences biogeochemical processes at both the scale of its observation (10(-2)-10(2)m(2)) and at aggregate scales (10(2)-10(4) m(2)). However, relatively little is known about how wetland microtopography develops or the factors influencing its structure and pattern. Growing research across different ecosystems suggests that reinforcing processes may be common between plants and their environment, resulting in self-organized patch features, like hummocks. Here, we used landscape ecology metrics and diagnostics to evaluate the plausibility of plant-environment feedback mechanisms in the maintenance of wetland microtopography. We used terrestrial laser scanning (TLS) to quantify the sizing and spatial distribution of hummocks in 10 black ash (Fraxinus nigra Marshall) wetlands in northern Minnesota, USA. We observed clear elevation bimodality in our wettest sites, indicating microsite divergence into two states: elevated hummocks and low elevation hollows. We coupled the TLS dataset to a 3-year water level record and soil-depth measurements, and showed that hummock height (mean = 0.31 +/- 0.06 m) variability is largely predicted by mean water level depth (R-2 = 0.8 at the site scale, R-2 = 0.12-0.56 at the hummock scale), with little influence of subsurface microtopography on surface microtopography. Hummocks at wetter sites exhibited regular spatial patterning (i.e., regular spacing of ca. 1.5 m, 25 %-30 % further apart than expected by chance) in contrast to the more random spatial arrangements of hummocks at drier sites Hummock size distributions (perimeters, areas, and volumes) were lognormal, with a characteristic patch area of approximately 1 m(2) across sites. Hummocks increase the effective soil surface area for redox gradients and exchange interfaces in black ash wetlands by up to 32 %, and influence surface water dynamics through modulation of specific yield by up to 30 %. Taken together, the data support the hypothesis that vegetation develops and maintains hummocks in response to anaerobic stresses from saturated soils, with a potential for a micro-topographic signature of life.