Browsing by Author "Dong, L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Molar tooth carbonates and benthic methane fluxes in Proterozoic oceansShen, B.; Dong, L.; Xiao, S.; Lang, X.; Huang, K.; Peng, Y.; Zhou, C.; Ke, S.; Liu, P. (2016-01-07)Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.
- Observation of Electron-Antineutrino Disappearance at Daya BayAn, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.; Brown, R. L.; Cai, B.; Cao, G. F.; Cao, J.; Carr, Rachel E.; Chan, W. T.; Chang, J. F.; Chang, Y.; Chasman, C.; Chen, H. S.; Chen, H. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y.; Chen, Y. X.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; Deng, Z. Y.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R. L.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Ho, T. H.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, H. X.; Huang, H. Z.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, Patrick; Isvan, Z.; Jaffe, D. E.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Leitner, R.; Leung, J. K. C.; Leung, K. Y.; Lewis, C. A.; Li, B.; Li, F.; Li, G. S.; Li, J.; Li, Q. J.; Li, S. F.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, S. K.; Lin, S. X.; Lin, Y. C.; Ling, J. J.; Link, Jonathan M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. C.; Liu, J. L.; Liu, S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mohapatra, D.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Nemchenok, I.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Oh, D.; Olshevski, A.; Pagac, A.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, Leo E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Seilhan, B.; Shao, B. B.; Shih, K.; Steiner, H.; Stoler, P.; Sun, G. X.; Sun, J. L.; Tam, Y. H.; Tanaka, H. K.; Tang, X.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J.; Xu, J. L.; Xu, W.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, L.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, Z. Y.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, K.; Zhang, Q. X.; Zhang, S. H.; Zhang, Y. C.; Zhang, Y. H. Percival; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, Z. Y.; Zhuang, H. L.; Zou, J. H. (American Physical Society, 2012-04-23)The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle 0(13) with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW(th) reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43 000 ton-GW(th)-day live-time exposure in 55 days, 10 416 (80 376) electron-antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R = 0.940 +/- 0.011(stat.) +/- 0.004(syst.). A rate-only analysis finds sin(2)2 theta(13) = 0.092 +/- 0.016(stat.) +/- 0.005(syst.) in a three-neutrino framework.