Browsing by Author "Doulis, Andreas G."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Antioxidant responses of pea (Pisum sativum L.) protoplastsDoulis, Andreas G. (Virginia Tech, 1994-01-15)Freshly isolated protoplasts from pea leaves were used to investigate the responses of antioxidant enzymes to oxidative stress. Two cultivars, Progress (tolerant) and Nugget (sensitive), that have differing resistance with respect to oxidative stress at the whole plant level were used. Sulfite and the superoxide generating herbicide, paraquat, were used as the oxidants. Final sulfite concentrations during photosynthetic incubations ranged from 1.5 mM to 30.0 mM. During the polarographic estimation of photosynthesis, CO₂-dependent O₂ evolution did not decrease. At sulfite concentrations of 3.0 mM or less, light-dependent O₂ evolution increased and was probably due to a concomitant SO₂-dependent O₂ evolution. Photosynthesis determined as ¹⁴CO₂ fixation was not increased at these low concentrations of sulfite. Concentrations greater than 7 mM = sulfite inhibited photosynthetic ¹⁴CO₂ fixation. No difference in these responses was found between the two cultivars. At 0.1 µM paraquat, the relative resistance to oxidative stress was reversed compared to previous studies at the whole plant level. With the tolerant cultivar, activity of the plastid antioxidant enzyme, glutathione reductase, increased after a three-hour exposure. Changes in the steady state level of glutathione reductase protein, as judged by immunoblots, did not correlate with the observed changes in enzyme activity. No change in the de novo synthesis of glutathione reductase occurred over the same period as a consequence of paraquat application. A mechanism, unrelated to oxygen free radical scavenging, may contribute to the relative tolerance to low concentrations of paraquat. On the other hand, after an eight-hour exposure to 0.1 mM PQ in the presence of Gamborg’s basal salts, superoxide dismutase activity of Progress protoplasts was enhanced 288% above the preexposure levels while glutathione reductase activity decreased 70% and ascorbate peroxidase activity decreased 90%. The relationship of these changes to oxidative damage to the photosynthetic machinery remains to be assessed.
- Characterization of the F Locus Responsible for Floral Anthocyanin Production in PotatoLaimbeer, F. Parker E.; Bargmann, Bastiaan O. R.; Holt, Sarah H.; Pratt, Trenton; Peterson, Brenda A.; Doulis, Andreas G.; Buell, C. Robin; Veilleux, Richard E. (Genetics Society of America, 2020-08-27)Anthocyanins are pigmented secondary metabolites produced via the flavonoid biosynthetic pathway and play important roles in plant stress responses, pollinator attraction, and consumer preference. Using RNA-sequencing analysis of a cross between diploid potato (Solanum tuberosum L.) lines segregating for flower color, we identified a homolog of the ANTHOCYANIN 2 (AN2) gene family that encodes a MYB transcription factor, herein termed StFlAN2, as the regulator of anthocyanin production in potato corollas. Transgenic introduction of StFlAN2 in white-flowered homozygous doubled-monoploid plants resulted in a recovery of purple flowers. RNA-sequencing revealed the specific anthocyanin biosynthetic genes activated by StFlAN2 as well as expression differences in genes within pathways involved in fruit ripening, senescence, and primary metabolism. Closer examination of the locus using genomic sequence analysis revealed a duplication in the StFlAN2 locus closely associated with gene expression that is likely attributable to nearby genetic elements. Taken together, this research provides insight into the regulation of anthocyanin biosynthesis in potato while also highlighting how the dynamic nature of the StFlAN2 locus may affect expression.
- The influence of low moisture stress on the gas exchange and thylakoid activity of loblolly pine (pinus taeda) and aleppo pine (pinus halepensis)Doulis, Andreas G. (Virginia Tech, 1990-05-15)The objectives of this study were to determine the influence of sublethal water stress on the physiology of loblolly and Aleppo pine. Gas exchange characteristics, uncoupled thylakoid electron transport capacity, and needle osmotic potentials were measured. Seedlings of both species were watered only when their needle water potential fell below -1.8 and -2.2 MPa respectively (water stress conditioning) or were kept well watered (controls). After 10 weeks of water stress conditioning, both regimes were allowed to dry down. During this period of increasing water stress, photosynthesis in both species was determined at 5 different cuvette CO₂ concentrations (approximately 200, 330, 500, 650, and 800 ppm). With Aleppo pine only, mesophyll resistances and stomatal limitations to gas exchange were estimated. Thylakoids were extracted from both species and their activity was measured in a liquid phase O₂ electrode (Hansatech Ltd) as rate of O₂ consumption. Methyl Viologen (1,1’ -dimethyl -4, 4’- bipyridinium ion ) was included in the reaction medium. Photosynthesis decreased with increasing water stress but fell more slowly in the conditioned seedlings. As water stress increased, total resistance to CO₂ exchange increased for both regimes to a much higher level than explained by stomatal resistance alone. In the conditioned seedlings, resistances increased less precipitously than in controls. Osmotic adjustment as measured with thermocouple psychrometers occurred in both species. Decreases in photosynthesis (both species) and increases in mesophyll resistance (Aleppo pine) were not accompanied by a decrease in whole chain uncoupled electron transport capacity.