Browsing by Author "Drover, Damion R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Benthic macroinvertebrate community structure responses to multiple stressors in mining-influenced streams of central Appalachia USADrover, Damion R. (Virginia Tech, 2018-06-25)Headwaters are crucial linkages between upland ecosystems and navigable waterways, serving as important sources of water, sediment, energy, nutrients and invertebrate prey for downstream ecosystems. Surface coal mining in central Appalachia impacts headwaters by burying streams and introducing pollutants to remaining streams including excessive sediments, trace elements, and salinity. Benthic macroinvertebrates are widely used as indicators of biological conditions of streams and are frequently sampled using semi-quantitative methods that preclude calculations of areal densities. Studies of central Appalachian mining impacts in non-acidic streams often focus on biotic effects of salinity, but other types of pollution and habitat alteration can potentially affect benthic macroinvertebrate community (BMC) structure and perhaps related functions of headwater streams. Objectives were: 1) use quantitative sampling and enumeration to determine how density, richness, and composition of BMCs in non-acidic central Appalachian headwaters respond to elevated salinity caused by coal surface mining, and 2) determine if BMC structural differences among study streams may be attributed to habitat and water-quality effects in addition to elevated salinity. I analyzed BMC structure, specific conductance (SC, surrogate measure of salinity), and habitat-feature data collected from 15 streams, each visited multiple times during 2013-2014. BMC structure changed across seasonal samples. Total benthic macroinvertebrate densities did not appear to be impacted by SC during any months, but reduced densities of SC-sensitive taxa were offset by increased densities of SC-tolerant taxa in high-SC streams. Total richness also declined with increasing SC, whereas BMCs in high-SC streams were simplified and dominated by a few SC-tolerant taxa. Taxonomic replacement was detected in high-SC streams for groups of benthic macroinvertebrates that did not exhibit density or richness response, showing that taxonomic replacement could be a valuable tool for detecting BMC changes that are not evident from analyses using conventional metrics. Specific conductance, water-column selenium concentration, large-cobble-to-fines ratio of stream substrate, and relative bed stability were associated with changes in BMC structure. These results suggest multiple stressors are influencing BMCs in mining-influenced Appalachian streams. These findings can inform future management of headwater streams influenced by mining in central Appalachia.
- Comparison of benthic macroinvertebrate assessment methods along a salinity gradient in headwater streamsPence, Rachel A.; Cianciolo, Thomas R.; Drover, Damion R.; McLaughlin, Daniel L.; Soucek, David J.; Timpano, Anthony J.; Zipper, Carl E.; Schoenholtz, Stephen H. (Springer, 2021-12-01)Benthic macroinvertebrate community assessments are used commonly to characterize aquatic systems and increasingly for identifying their impairment caused by myriad stressors. Yet sampling and enumeration methods vary, and research is needed to compare their abilities to detect macroinvertebrate community responses to specific water quality variables. A common assessment method, rapid bioassessment, uses subsampling procedures to identify a fixed number of individual organisms regardless of total sample abundance. In contrast, full-enumeration assessments typically allow for expanded community characterization resulting from higher numbers of identified organisms within a collected sample. Here, we compared these two sampling and enumeration methods and their abilities to detect benthic macroinvertebrate response to freshwater salinization, a common stressor of streams worldwide. We applied both methods in headwater streams along a salinity gradient within the coal-mining region of central Appalachia USA. Metrics of taxonomic richness, community composition, and trophic function differed between the methods, yet most metrics exhibiting significant response to SC for full-enumeration samples also did for rapid bioassessment samples. However, full-enumeration yielded taxonomic-based metrics consistently more responsive to the salinization gradient. Full-enumeration assessments may potentially provide more complete characterization of macroinvertebrate communities and their response to increased salinization, whereas the more cost-effective and widely employed rapid bioassessment method can detect community alterations along the full salinity gradient. These findings can inform decisions regarding such tradeoffs for assessments of freshwater salinization in headwater streams and highlight the need for similar research of sampling and enumeration methodology in other aquatic systems and for other stressors.
- Wetness index based on landscape position and topography (WILT): Modifying TWI to reflect landscape positionMeles, Menberu B.; Younger, Seth E.; Jackson, C. Rhett; Du, Enhao; Drover, Damion R. (2020-02-01)Water and land resource management planning benefits greatly from accurate prediction and understanding of the spatial distribution of wetness. The topographic wetness index (TWI) was conceived to predict relative surface wetness, and thus hydrologic responsiveness, across a watershed based on the assumption that shallow slope-parallel flow is a major driver of the movement and distribution of soil water. The index has been extensively used in modeling of landscape characteristics responsive to wetness, and some studies have shown the TWI performs well in landscapes where interflow is a dominant process. However, groundwater flow dominates the hydrology of low-slope landscapes with high subsurface conductivities, and the TWI assumptions are not likely to perform well in such environments. For groundwater dominated systems, we propose a hybrid wetness index (Wetness Index based on Landscape position and Topography, WILT) that inversely weights the upslope contributing area by the distance to the nearest surface water feature and the depth to groundwater. When explicit depth to groundwater data are not available, height above and separation from surface water features can act as surrogates for proximity to groundwater. The resulting WILT map provides a more realistic spatial distribution of relative wetness across a low-slope Coastal Plain landscape as demonstrated by improved prediction of hydric soils, depth to groundwater, nitrogen and carbon concentrations in the A horizon of the soil profile, and sensitivity to DEM scale.