Browsing by Author "Duan, Xu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Influence of gender and obesity on motor performance, neuromuscular control and endurance in older adultsDuan, Xu (Virginia Tech, 2018-01-23)The rapid growth of an older demographic is an increasing concern around the world. Older people have been reported to suffer from physiological and neuromuscular declines in several systems including skeletal muscles, central nervous system, cardiovascular processes and respiratory function. These age-related changes are often reflected through impairments in functional performance of occupational tasks as well as activities of daily living. This may make an older population more prone to musculoskeletal disorders and injuries. In addition, health problems and injury risks are likely amplified by factors such as obesity. Obesity has emerged as a serious health concern in the United States in recent decades. However, obesity-related changes in performance and motor control as well as how they will be modified by gender, specifically among older adults, are still largely unexplored. As motor variability has recently been reported to be associated with fatigue development and may have the potential to reveal underlying mechanisms of neuromuscular control, the main goals of this study were to investigate the influence of gender and obesity on motor performance, neuromuscular control and endurance in the elderly, by examining differences in motor variability during intermittent submaximal isometric exertions of the knee and hand. Fifty-two older participants with age over 65 were recruited into four groups: obese male (9), obese female (13), non-obese male (15) and non-obese female (15). The obese groups consisted of those whose BMI was greater than 30 kg/m2. Participants were asked to perform intermittent (15s on and 15s off) isometric handgrip and knee extensions at 30% MVC until exhaustion. Force and muscle activations of the Vastus Lateralis, Rectus Femoris, Extensor Carpi Radialis and Flexor Carpi Radialis muscles were collected through the endurance task. Motor variability was quantified using the coefficient of variation (CV) and sample entropy (SaEn) of the surface electromyography (EMG) and force signals. Motor variability during exercise differed both between males and females, and between obese and non-obese people, reflecting different motor strategies employed in order to prolong endurance. Overall, across all individuals, we observed a significant positive correlation between cycle-to-cycle variability of knee extensor muscle activation during the baseline period of the task and endurance time. As for gender differences, males exhibited longer endurance times than females, and seemed to achieve that through utilizing a motor strategy involving a more variable (higher CV) and less complex (lower SaEn) agonistic muscle activity. Since this was accompanied by a lower fluctuation in the force signal (lower CV) and a higher complexity of force (SaEn), we interpreted this to be a motor strategy involving more variable recruitment of synergistic and antagonistic motor units during the knee extension task to prolong endurance time, among males compared to females. As for obesity differences, there were no obesity-related changes in endurance time. However, obese individuals exhibited a greater cycle-to-cycle variability that was positively correlated with endurance time during the knee extension task, indicating a larger alteration in the recruitment of motor units across successive contractions, which contributed to comparable endurance time and performance with their non-obese counterparts. During the hand-grip tasks, variabilities in force and muscle activity followed similar trends as the knee extension task. However, there were no significant gender or obesity differences in endurance time, and there also weren't any significant correlations between any of the dependent variables with endurance time. Thus, this study was a basic investigation into changes in motor variability and how it was associated with the development of fatigue among older adults; and the potential influences of gender and obesity on the relationships. Two tasks of high relevance to both occupational life and activities of daily living, i.e. knee extension and hand-grip were considered. Our findings enhance the theoretical understanding of the underlying neuromuscular control patterns and their relationship with fatigue for different individuals. Given that both aging and obesity rates are rising continuously and becoming a substantial health and safety problem especially in the occupational environment, the results from this study are both timely and critical for practical design applications, especially by recognizing the importance of having a variable motor pattern in task performance, even among older adults.
- Neuromuscular Control and Performance Differences Associated With Gender and Obesity in Fatiguing Tasks Performed by Older AdultsDuan, Xu; Rhee, Joohyun; Mehta, Ranjana K.; Srinivasan, Divya (Frontiers, 2018-07-03)Obesity rates in the geriatric population have emerged as a serious health concern in recent decades. Yet, obesity-related differences in neuromuscular performance and motor control during fatiguing tasks, and how they are modified by gender, specifically among older adults, are still largely unexplored. The first aim of this study was to understand obesity and gender-related differences in endurance time among older adults. Motor variability has been linked with inter-individual differences in the rate of fatigue development, and as potentially revealing underlying mechanisms of neuromuscular control. Hence, the second and third aims of this study were to investigate to what extent motor variability at baseline could predict inter-individual differences in endurance time, and whether systematic obesity and gender differences exist in motor variability among older adults. Fifty-nine older adults (65 years or older) were recruited into four groups: obese male, obese female, non-obese male, and non-obese female. Participants performed submaximal intermittent isometric knee extensions until exhaustion. Knee extension force and muscle activation signals (surface electromyography) of a primary agonist muscle, the Vastus Lateralis (VL), were collected. Endurance time and metrics quantifying both the size and structure of variability were computed for the force and EMG signals, using coefficient of variation (within cycles and between cycles) and sample entropy measures. While group differences in endurance time were primarily associated with gender, adding individual motor variability measures as predictor variables explained significantly more variance in endurance time, thus highlighting the relevance of motor variability in understanding neuromotor control strategies. Males exhibited longer endurance times, higher EMG CV, lower EMG SaEn, lower force CV, and higher force SaEn than females. These findings are interpreted to indicate males as using a motor strategy involving better “distribution” of the neural efforts across synergists and antagonists to achieve better performance during the knee extension task. No obesity-related changes in endurance time were found. However, obese individuals exhibited a greater cycle-to-cycle variability in muscle activation, indicating a larger alteration in the recruitment of motor units across successive contractions and potentially increased neural costs, which may have contributed to comparable endurance time and performance as non-obese older adults.