Browsing by Author "Edwards, B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Derivation of a near-surface damping model for the Groningen gas fieldRuigrok, E.; Rodriguez-Marek, Adrian; Edwards, B.; Kruiver, P. P.; Dost, B.; Bommer, J. (Oxford University Press, 2022-04-13)Seismic damping of near-surface deposits is an important input to site-response analysis for seismic hazard assessment. In Groningen, the Netherlands, gas production from a reservoir at 3 km depth causes seismicity. Above the gas field, an 800 m thick layer of unconsolidated sediments exist, which consists of a mixture of sand, gravel, clay and peat strata. Shear waves induced at 3 km depth experience most of their anelastic attenuation in these loose sediments. A good estimate of damping is therefore crucial for modelling realistic ground-motion levels. In Groningen, we take advantage of a large network of 200 m deep vertical arrays to estimate damping from recordings of the induced events. As a first step, we apply seismic interferometry by deconvolution to estimate local transfer functions over these vertical arrays. Subsequently, two different methods are employed. The first is the 'upgoing' method, where the amplitude decay of the retrieved upgoing wave is used. The second is the 'up-down' method, where the amplitude difference between retrieved up- and downgoing waves is utilized. For the upgoing method, the amplitude of the upgoing direct wave is affected by both elastic and anelastic effects. In order to estimate the anelastic attenuation, it is necessary to remove the elastic amplification first. Despite the fact that elastic compensation could be determined quite accurately, non-physical damping values were estimated for a number of boreholes. Likely, the underlying cause was small differences in effective response functions of geophones at different depths. It was found that the up-down method is more robust. With this method, elastic propagation corrections are not needed. In addition, small differences in in situ geophone response are irrelevant because the up- and downgoing waves retrieved at the same geophone are used. For the 1-D case, we showed that for estimating the local transfer function, the complex reverberations need to be included in the interferometric process. Only when this is done, the transfer function does not contain elastic transmission loss and Q estimation can be made without knowing the soil profile in detail. Uncertainty in the estimated damping was found from the signal-to-noise ratio of the estimated transfer function. The Q profiles estimated with the up-down method were used to derive a damping model for the top 200 m of the entire Groningen field. A scaling relation was derived by comparing estimated Q profiles with low-strain damping profiles that were constructed using published models for low-strain damping linked to soil properties. This scaling relation, together with the soil-property-based damping model, allowed up-scaling of the model to each grid-cell in the Groningen field. For depths below 200 m, damping was derived from the attenuation of the microseism over Groningen. The mean damping model, over a frequency band between 2 and 20 Hz, was estimated to be 2.0 per cent (0-50 m depth), 1.3 per cent (50-100 m), 0.66 per cent (100-150 m), 0.57 per cent (150-200 m) and 0.5 per cent (200-580 m).
- Liquefaction Hazard in the Groningen Region of the Netherlands due to Induced SeismicityGreen, Russell A.; Bommer, J. J.; Stafford, Peter J.; Maurer, B. W.; Kruiver, P. P.; Edwards, B.; Rodriguez-Marek, Adrian; de Lange, Ger; Oates, S. J.; Storck, T.; Omidi, P.; Bourne, S. J.; van Elk, J. (2020-08-01)The operator of the Groningen gas field is leading an effort to quantify the seismic hazard and risk of the region due to induced earthquakes, including overseeing one of the most comprehensive liquefaction hazard studies performed globally to date. Due to the unique characteristics of the seismic hazard and the geologic deposits in Groningen, efforts first focused on developing relationships for a Groningen-specific liquefaction triggering model. The liquefaction hazard was then assessed using a Monte Carlo method, wherein a range of credible event scenarios were considered in computing liquefaction damage-potential hazard curves. This effort entailed the use of a regional stochastic seismic source model, ground motion prediction equation, site response model, and geologic model that were developed as part of the broader regional seismic hazard assessment. No to minor surficial liquefaction manifestations are predicted for most sites across the study area for a 2475-year return period. The only sites where moderate surficial liquefaction manifestations are predicted are in the town of Zandeweer, with only some of the sites in the town being predicted to experience this severity of liquefaction for this return period. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.