Browsing by Author "Ellison, Siobhan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Can levamisole upregulate the equine cell-mediated macrophage (M1) dendritic cell (DC1) T-helper 1 (CD4 Th1) T-cytotoxic (CD8) immune response in vitro?Witonsky, Sharon G.; Buechner-Maxwell, Virginia A.; Santonastasto, Amy; Pleasant, R. Scott; Werre, Stephen R.; Wagner, Bettina; Ellison, Siobhan; Lindsay, David S. (Wiley, 2019-03-01)Background: Equine protozoal myeloencephalitis (EPM) is a common and devastating neurologic disease of horses in the United States. Because some EPM-affected horses have decreased immune responses, immunomodulators such as levamisole have been proposed as supplemental treatments. However, little is known about levamisole's effects or its mechanism of action in horses. Objective: Levamisole in combination with another mitogen will stimulate a macrophage 1 (M1), dendritic cell 1 (DC1), T-helper 1 (CD4 Th1), and T-cytotoxic (CD8) immune response in equine peripheral blood mononuclear cells (PBMCs) in vitro as compared to mitogen alone. Animals: Ten neurologically normal adult horses serologically negative for Sarcocystis neurona. Methods: Prospective study. Optimal conditions for levamisole were determined based on cellular proliferation. Peripheral blood mononuclear cells were then cultured using optimal conditions of mitogen and levamisole to identify the immune phenotype, based on subset-specific activation markers, intracellular cytokine production, and cytokine concentrations in cell supernatants. Subset-specific proliferation was determined using a vital stain. Results: Concanavalin A (conA) with levamisole, but not levamisole alone, resulted in a significant decrease (P <.05) in PBMC proliferation compared to conA alone. Levamisole alone did not elicit a specific immune phenotype different than that induced by conA. Conclusion and Clinical Importance: Levamisole co-cultured with conA significantly attenuated the PBMC proliferative response as compared with conA. If the mechanisms by which levamisole modulates the immune phenotype can be further defined, levamisole may have potential use in the treatment of inflammatory diseases.
- Effects of Experimental Sarcocystis neurona-Induced Infection on Immunity in an Equine ModelLewis, S. Rochelle; Ellison, Siobhan; Dascanio, John J.; Lindsay, David S.; Gogal, Robert M.; Werre, Stephen R.; Surendran, Naveen; Breen, Meghan E.; Heid, Bettina; Andrews, Frank M.; Buechner-Maxwell, Virginia A.; Witonsky, Sharon G. (2014)Sarcocystis neurona is the most common cause of Equine Protozoal Myeloencephalitis (EPM), affecting 0.5-1% horses in the United States during their lifetimes. The objective of this study was to evaluate the equine immune responses in an experimentally induced Sarcocystis neurona infection model. Neurologic parameters were recorded prior to and throughout the 70-day study by blinded investigators. Recombinant SnSAG1 ELISA for serum and CSF were used to confirm and track disease progression. All experimentally infected horses displayed neurologic signs after infection. Neutrophils, monocytes, and lymphocytes from infected horses displayed significantly delayed apoptosis at some time points. Cell proliferation was significantly increased in S. neurona-infected horses when stimulated nonspecifically with PMA/I but significantly decreased when stimulated with S. neurona compared to controls. Collectively, our results suggest that horses experimentally infected with S. neurona manifest impaired antigen specific response to S. neurona, which could be a function of altered antigen presentation, lack of antigen recognition, or both.
- Horses experimentally infected with sarcocystis neurona develop altered immune responses in vitroWitonsky, Sharon G.; Ellison, Siobhan; Yang, Jibing; Gogal, Robert M.; Lawler, Heather; Suzuki, Yasuhiro; Sriranganathan, Nammalwar; Andrews, Frank M.; Ward, Daniel; Lindsay, David S. (American Society of Parasitology, 2008-10)Equine protozoal myeloencephalitis (EPM) due to Sarcocystis neurona infection is I of the most common neurologic diseases in horses in the United States. The mechanisms by which most horses resist disease, as well as the possible mechanisms by which the immune system may be suppressed in horses that develop EPM, are not known. Therefore, the objectives of this study were to determine whether horses experimentally infected with S. neurona developed suppressed immune responses. Thirteen horses that were negative for S. neurona antibodies in serum and cerebrospinal fluid (CSF) were randomly assigned to control (n = 5) or infected (n = 8) treatment groups. Neurologic exams and cerebrospinal fluid analyses were performed prior to, and following, S. neurona infection. Prior to, and at multiple time points following infection, immune parameters were determined. All 8 S. neurona-infected horses developed clinical signs consistent with EPM, and had S. neurona antibodies in the serum and CSF Both infected and control horses had increased percentages (P < 0.05) of B cells at 28 clays postinfection. Infected horses had significantly decreased (P < 0.05) proliferation responses as measured by thymidine incorporation to nonspecific mitogens phorbol myristate acetate (PMA) and ionomycin (I) as soon as 2 days postinfection.