Browsing by Author "Eltahir, Amnah"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Novel Electrochemical Methods for Human NeurochemistryEltahir, Amnah (Virginia Tech, 2020-10-14)Computational psychiatry describes psychological phenomena as abnormalities in biological computations. Current available technologies span multiple organizational and temporal domains, but there remains a knowledge gap with respect to neuromodulator dynamics in humans. Recent efforts by members of the Montague Laboratory and collaborators adapted fast scan cyclic voltammetry (FSCV) from rodent experiments for use in human patients already receiving brain surgery. The process of modifying established FSCV methods for clinical application has led improved model building strategies, and a new "random burst" sensing protocol. The advent of random burst sensing raises questions about the capabilities of in-vivo electrochemistry techniques, while opening introducing possibilities for novel approaches. Through a series of in-vitro experiments, this study aims to explore and validate novel electrochemical sensing approaches. Initial expository experiments tested assumptions about waveform design to detect dopamine concentrations by reducing amplitude and duration of forcing functions, as well as distinguishing norepinephrine concentrations. Next, large data sets collected on mixtures of dopamine, serotonin and pH validated a newly proposed "low amplitude random burst sensing" protocol, for both within-probe and out-of-probe modeling. Data collected on the same set of solutions also attempted to establish an order-millisecond random burst sensing approach. Preliminary endeavors into using convolutional neural networks also provided an example of an alternative modeling strategy. The results of this work challenge existing assumptions of neurochemistry, while demonstrating the capabilities of new neurochemical sensing approaches. This study will also act as a springboard for emerging technological developments in human neurochemistry.
- Surface Based Decoding of Fusiform Face Area Reveals Relationship Between SNR and Accuracy in Support Vector RegressionEltahir, Amnah (Virginia Tech, 2018-05-24)The objective of this study was to expand on a method previously established in the lab for predicting subcortical structures using functional magnetic resonance imaging (fMRI) data restricted to the cortical surface. Our goal is to enhance the utility of low cost, portable imaging modalities, such as functional near infrared spectroscopy (fNIRS), which is limited in signal penetration depth. Previous work in the lab successfully employed functional connectivity to predict ten resting state networks and six anatomically de fined structures from the outer 10 mm layer of cortex using resting state fMRI data. The novelty of this study was two-fold: we chose to predict the functionally de fined region fusiform face area (FFA), and we utilized the functional connectivity of both resting state and task activation. Right FFA was identi ed for 27 subjects using a general linear model of a functional localizer tasks, and the average time series were extracted from right FFA and used as training and testing labels in support vector regression (SVR) models. Both resting state and task data decoded activity in right FFA above chance, both within and between run types. Our method is not specific to resting state, potentially broadening the scope of research questions depth-limited techniques can address. We observed a similarity in our accuracy cross-validation to previous work in the lab. We characterized this relationship between prediction accuracy and spatial signal-to-noise (SNR). We found that this relationship varied between resting state and task, as well as the functionality of features included in SVR modeling.