Browsing by Author "Enriquez, Daniel"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Evaluating Layout Dimensionalities in PC+VR Asymmetric Collaborative Decision MakingEnriquez, Daniel; Tong, Wai; North, Christopher L.; Qu, Huamin; Yang, Yalong (ACM, 2024-10-20)With the commercialization of virtual/augmented reality (VR/AR) devices, there is an increasing interest in combining immersive and non-immersive devices (e.g., desktop computers) for asymmetric collaborations. While such asymmetric settings have been examined in social platforms, significant questions around layout dimensionality in data-driven decision-making remain underexplored. A crucial inquiry arises: although presenting a consistent 3D virtual world on both immersive and non-immersive platforms has been a common practice in social applications, does the same guideline apply to lay out data? Or should data placement be optimized locally according to each device's display capacity? This study aims to provide empirical insights into the user experience of asymmetric collaboration in data-driven decision-making. We tested practical dimensionality combinations between PC and VR, resulting in three conditions: PC2D+VR2D, PC2D+VR3D, and PC3D+VR3D. The results revealed a preference for PC2D+VR3D, and PC2D+VR2D led to the quickest task completion. Our investigation facilitates an in-depth discussion of the trade-offs associated with different layout dimensionalities in asymmetric collaborations.
- Investigating Asymmetric Collaboration and Interaction in Immersive EnvironmentsEnriquez, Daniel (Virginia Tech, 2024-01-23)With the commercialization of virtual/augmented reality (VR/AR) devices, there is an increasing interest in combining immersive and non-immersive devices (e.g., desktop computers, mobile devices) for asymmetric collaborations. While such asymmetric settings have been examined in social platforms, questions surrounding collaborative view dimensionalities in data-driven decision-making and interaction from non-immersive devices remain under-explored. A crucial inquiry arises: although presenting a consistent 3D virtual world on both immersive and non-immersive platforms has been a common practice in social applications, does the same guideline apply to lay out data? Or should data placement be optimized locally according to each device's display capacity? To this effect, a user study was conducted to provide empirical insights into the user experience of asymmetric collaboration in data-driven decision-making. The user study tested practical dimensionality combinations between PC and VR, resulting in three conditions: PC2D+VR2D, PC2D+VR3D, and PC3D+VR3D. The results revealed a preference for PC2D+VR3D, and PC2D+VR2D led to the quickest task completion. Similarly, mobile devices have become an inclusive alternative to head-worn displays in virtual reality (VR) environments, enhancing accessibility and allowing cross-device collaboration. Object manipulation techniques in mobile Augmented Reality (AR) have been typically evaluated in table-top scale and we lack an understanding of how these techniques perform in room-scale environments. Two studies were conducted to analyze object translation tasks, each with 30 participants, to investigate how different techniques impact usability and performance for room-scale mobile VR object translations. Results indicated that the Joystick technique, which allowed translation in relation to the user's perspective, was the fastest and most preferred, without difference in precision. These findings provide insight for designing collaborative, asymmetric VR environments.
- Understanding Multi-user, Handheld Mixed Reality for Group-based MR GamesBautista Isaza, Carlos Augusto; Enriquez, Daniel; Moon, Hayoun; Jeon, Myounghoon; Lee, Sang Won (ACM, 2024-04-23)Research has identified applications of handheld-based VR, which utilizes handheld displays or mobile devices, for developing systems that involve users in mixed reality (MR) without the need for head-worn displays (HWDs). Such systems can potentially accommodate large groups of users participating in MR. However, we lack an understanding of how group sizes and interaction methods affect the user experience.} In this paper, we aim to advance our understanding of handheld-based MR in the context of multiplayer, co-located games. We conducted a study (N = 38) to understand how user experiences vary by group size (2, 4, and 8) and interaction method (proximity-based or pointing-based). For our experiment, we implemented a multiuser experience for up to ten users. We found that proximity-based interaction that encouraged dynamic movement positively affected social presence and physical/temporal workload. In bigger group settings, participants felt less challenged and less positive. Individuals had varying preferences for group size and interaction type. The findings of the study will advance our understanding of the design space for handheld-based MR in terms of group sizes and interaction schemes. To make our contributions explicit, we conclude our paper with design implications that can inform user experience design in handheld-based mixed reality contexts.