Browsing by Author "Epstein, Joshua M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Data analysis and modeling pipelines for controlled networked social science experimentsCedeno-Mieles, Vanessa; Hu, Zhihao; Ren, Yihui; Deng, Xinwei; Contractor, Noshir; Ekanayake, Saliya; Epstein, Joshua M.; Goode, Brian J.; Korkmaz, Gizem; Kuhlman, Christopher J.; Machi, Dustin; Macy, Michael; Marathe, Madhav V.; Ramakrishnan, Naren; Saraf, Parang; Self, Nathan (PLOS, 2020-11-24)There is large interest in networked social science experiments for understanding human behavior at-scale. Significant effort is required to perform data analytics on experimental outputs and for computational modeling of custom experiments. Moreover, experiments and modeling are often performed in a cycle, enabling iterative experimental refinement and data modeling to uncover interesting insights and to generate/refute hypotheses about social behaviors. The current practice for social analysts is to develop tailor-made computer programs and analytical scripts for experiments and modeling. This often leads to inefficiencies and duplication of effort. In this work, we propose a pipeline framework to take a significant step towards overcoming these challenges. Our contribution is to describe the design and implementation of a software system to automate many of the steps involved in analyzing social science experimental data, building models to capture the behavior of human subjects, and providing data to test hypotheses. The proposed pipeline framework consists of formal models, formal algorithms, and theoretical models as the basis for the design and implementation. We propose a formal data model, such that if an experiment can be described in terms of this model, then our pipeline software can be used to analyze data efficiently. The merits of the proposed pipeline framework is elaborated by several case studies of networked social science experiments.
- Pipelines for Computational Social Science Experiments and Model BuildingCedeno, Vanessa Ines (Virginia Tech, 2019-07-12)There has been significant growth in online social science experiments in order to understand behavior at-scale, with finer-grained data collection. Considerable work is required to perform data analytics for custom experiments. In this dissertation, we design and build composable and extensible automated software pipelines for evaluating social phenomena through iterative experiments and modeling. To reason about experiments and models, we design a formal data model. This combined approach of experiments and models has been done in some studies without automation, or purely conceptually. We are motivated by a particular social behavior, namely collective identity (CI). Group or CI is an individual's cognitive, moral, and emotional connection with a broader community, category, practice, or institution. Extensive experimental research shows that CI influences human decision-making. Because of this, there is interest in modeling situations that promote the creation of CI in order to learn more from the process and to predict human behavior in real life situations. One of our goals in this dissertation is to understand whether a cooperative anagram game can produce CI within a group. With all of the experimental work on anagram games, it is surprising that very little work has been done in modeling these games. Also, abduction is an inference approach that uses data and observations to identify plausibly (and preferably, best) explanations for phenomena. Abduction has broad application in robotics, genetics, automated systems, and image understanding, but have largely been devoid of human behavior. We use these pipelines to understand intra-group cooperation and its effect on fostering CI. We devise and execute an iterative abductive analysis process that is driven by the social sciences. In a group anagrams web-based networked game setting, we formalize an abductive loop, implement it computationally, and exercise it; we build and evaluate three agent-based models (ABMs) through a set of composable and extensible pipelines; we also analyze experimental data and develop mechanistic and data-driven models of human reasoning to predict detailed game player action. The agreement between model predictions and experimental data indicate that our models can explain behavior and provide novel experimental insights into CI.