Browsing by Author "Everson, Holly Kathleen"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Active Force Correction of Off-Nominal Structures Using Intelligent ScaffoldingEverson, Holly Kathleen (Virginia Tech, 2024-10-17)The culmination of this research focuses on the area of structural support and stability as it relates to the field of large space structures. Fitting into the branch of in-space assembly, servicing, and manufacturing (ISAM), this topic covers essential subject matter areas of robotic manipulation, repair, state estimation, and structural health. As the next generation of space structures includes increased areas of modularity, the nature of structures built in-space lends itself significantly to repair efforts. With plans for these repair efforts in place, the lifetime of damaged structures can be greatly extended leading to a greater chance of mission success. By considering how repair efforts factor into the assembly scope, critical failures in large trusses, especially those involving single-point structural failures, can be mitigated. To do this, external forces are applied to the damaged structure utilizing an intelligent scaffolding formulation. This methodology employs robots to strategically apply loads to re-route abnormal stress and strain paths, correct for resulting deflections, and stabilize the structure itself. These tasks are vital to the safety of the structure and must take place before any repair efforts are considered in an effort to prevent cascading damage. The following research explores this damage simulation and correction paradigm through a variety of truss initial conditions, which allow for a suite of deflection responses. Utilizing these deflection responses a safe path for applying loads incrementally through generated waypoints is created with the help of the finite element modeler Ansys and a Python script. The ability for this system to successfully realign the wide scope of truss cases showcases that it is a truly adaptive system. Although this work is primarily proven within a simulation space, efforts to contextualize in a physical system and explore the elements needed to implement this method are also described. Finally, although this research is presented within the scope of damage repair, the final chapter looks to apply this method to other similarly unsupported structures by examining how critical it can be during assembly scenarios.