Browsing by Author "Eyestone, Willard H."
Now showing 1 - 20 of 34
Results Per Page
Sort Options
- Aberrant hippocampal neurogenesis contributes to learning and memory deficits in a mouse model of repetitive mild traumatic brain injuryGreer, Kisha (Virginia Tech, 2019-10-02)Adult hippocampal neurogenesis, or the process of creating new neurons in the dentate gyrus (DG) of the hippocampus, underlies learning and memory capacity. This cognitive ability is essential for humans to operate in their everyday lives, but cognitive disruption can occur in response to traumatic insult such as brain injury. Previous findings in rodent models have characterized the effect of moderate traumatic brain injury (TBI) on neurogenesis and found learning and memory shortfalls correlated with limited neurogenic capacity. While there are no substantial changes after one mild TBI, research has yet to determine if neurogenesis contributes to the worsened cognitive outcomes of repetitive mild TBI. Here, we examined the effect of neurogenesis on cognitive decline following repetitive mild TBI by utilizing AraC to limit the neurogenic capacity of the DG. Utilizing a BrdU fate-labeling strategy, we found a significant increase in the number of immature neurons that correlate learning and memory impairment. These changes were attenuated in AraC-treated animals. We further identified endothelial cell (EC)-specific EphA4 receptor as a key mediator of aberrant neurogenesis. Taken together, we conclude that increased aberrant neurogenesis contributes to learning and memory deficits after repetitive mild TBI.
- Adipose-Derived Adult Stem Cells as Trophic Mediators of Tendon RegenerationStewart, Shelley Leigh (Virginia Tech, 2012-06-26)The adipose-derived stromal vascular fraction (SVF) is a promising new therapy for equine flexor tendonitis. This heterogeneous population of cells may improve tendon healing via the production of growth and chemotactic factors capable of recruiting endogenous stem cells and increasing extracellular matrix production by tendon fibroblasts (TFBL). The purpose of this study was to evaluate the ability of adipose-derived cells (ADC) culture expanded from the SVF to act as trophic mediators in vitro. We hypothesized that ADCs would produce growth and chemotactic factors important in tendon healing and capable of inducing cell migration and matrix protein gene expression. Superficial digital flexor tendons and adipose tissue were harvested from eight adult horses and processed to obtain SVF cells, ADCs and TFBLs. Adipose-derived cells and TFBLs were grown in monolayer culture for growth factor quantification, to produce conditioned media for microchemotaxis, and in co-culture for quantification of matrix protein gene expression by TFBLs. Growth factor gene expression by SVF cells was significantly greater than in ADCs or TFBLs. Co-culture of TFBLs and ADCs resulted in modest up-regulation of matrix protein expression (collagen types I and III, decorin, and cartilage oligomeric matrix protein) by TFBLs. Media conditioned by ADCs induced ADC migration in a dose dependent manner. These findings support the role of both SVF and ADCs as trophic mediators in tendon regeneration. The differences detected in gene expression between SVF cells and ADCs indicate that additional studies are needed to evaluate the changes that occur during culture of these cells.
- Characterization of lin-42/period transcriptional regulation by the Ikaros/hunchback-family transcription factor ZTF-16 in Caenorhabditis elegansMeisel, Kacey Danielle (Virginia Tech, 2013-06-03)The gene lin-42 is an ortholog of the mammalian period gene, a component of the circadian pathway that converts environmental stimuli into behavioral and physiological outputs over 24 hours. Mammalian period also regulates adult stem cell differentiation, although this function is poorly understood. The structure, function and expression of lin-42 are all similar to period. Therefore, we are studying lin-42 regulation and function during C. elegans larval development as a model for understanding period control of mammalian stem/progenitor cell development. Previous work has shown that ZTF-16 is a regulator of lin-42 transcription. The lin-42 locus encodes three isoforms, and we have characterized lin-42 isoform specific regulation by ZTF-16 through phenotypic assays and analysis of transcriptional reporter strains. Our data show that ZTF-16 regulates the cyclic expression of lin-42A and lin-42B during larval development. However, ztf-16 is not expressed during the adult stage and does not regulate lin-42C, which is expressed only in adults and may be responsible for the circadian functions of lin-42. We also show that ztf-16 reduction-of-function mutations phenocopy loss-of- function phenotypes of the lin-42A/B isoforms. Finally, we have found that deletion of a putative ZTF-16 transcription factor binding site within the lin-42BC promoter abolishes tissue-specific expression patterns. Together, these data indicate that ZTF-16 is required to regulate the expression of lin-42A/B during C. elegans development, and may do this by direct binding to the lin-42BC promoter. Our findings pave the way for testing the possible regulation of period expression by HIL-family transcription factors in mammalian tissues.
- Characterization of the expression of angiogenic factors in the feline placenta during development and in feline cutaneous squamous cell carcinomaGudenschwager Basso, Erwin Kristobal Felipe (Virginia Tech, 2018-11-13)Throughout gestation, the blood vessel network of the placenta is formed sequentially by processes known as vasculogenesis and angiogenesis, which together meet the needs of the growing fetus. Normal placental angiogenesis is critical to support adequate fetal growth and assure the health of the offspring. Proper angiogenesis requires precise regulation of expression of agents that modulate this process; otherwise, pathologies of pregnancy such as preeclampsia may occur. The placenta is composed of different layers of tissue, including the lamellar (LZ), junctional, and glandular zones, each with a vascular morphology attuned to its function. We hypothesized that higher expression of pro-angiogenic factors is associated with increased morphological metrics in the LZ, the major vascularized zone. Thus, we aimed to characterize the major changes in morphology and vascular development in the placenta throughout pregnancy in cats, alongside a compressive analysis of the expression of major angiogenic factors and their receptors in the placenta, with an emphasis on the identification and interaction of different isoforms of the VEGF family. Microscopic analysis of tissue specimens from different stages of pregnancy revealed increased thickness of the LZ, especially during early to mid-gestation, at which time the tissue is composed of abundant materno-fetal interdigitations that appears rich in capillaries. VEGF proteins were detected in placental tissue in both fetal and maternal cells of the placenta, suggesting stimulatory interactions between different cell types to promote growth and angiogenesis. Gene expression analysis of placenta revealed upregulation of the pro-angiogenic factor VEGF-A in mid-pregnancy, followed by a steady decline toward term, consistent with morphologic changes in the LZ. In contrast, another pro-angiogenic factor, PlGF, showed a marked increase toward term; Flt-1, which acts as a receptor or reservoir for PLGF and VEGF A, was also upregulated at late pregnancy. Increased ratios of PLGF:VEGF-A may contribute to LZ proliferation in the last trimester. These findings are consistent with the creation of a proangiogenic placental state during gestation. Overall, we expect that this research will help elucidate mechanisms of placental vascularization, which can be applied to the design of improved strategies to treat vascular complications of pregnancy. Lastly, we applied the tools developed for placental studies to investigate pathologic angiogenesis in cutaneous squamous cell carcinoma (CSCC), a common skin cancer with major economic and medical impacts in humans and veterinary species. The creation of a new blood supply is essential for growth and metastasis of many tumor types. The goal of this study was to measure expression of variants of proteins that stimulate angiogenesis or transmit an angiogenic stimulus in feline CSCC. The results were mixed, with differences detected in expression of some regulatory agents and, for others, unexpectedly lower expression in CSSC compared to controls. Interestingly, the expression of VEGF-A relative to the protein that transmits its signal (KDR) was elevated in CSCC, suggestive of an altered signaling relationship. This finding supports our hypothesis and is consistent with human SCC studies. Our results encourage further studies on angiogenic factor variants in feline CSCC.
- Common Signaling Elements in Response Pathways Activated by the Endothelial Survival Factors VEGF and InsulinWang, Amanda Cyphers (Virginia Tech, 2008-12-02)Damage to the vasculature is a common occurrence in diabetes mellitus. At the cellular level, dysfunction of vascular endothelial cells is often associated with diabetic conditions. Multiple agents maintain the endothelium, including vascular endothelial growth factor (VEGF), an endothelial cell mitogen/survival factor, and insulin, which has anti-apoptotic effects on endothelial cells in addition to regulating glucose homeostasis. Insulin and VEGF, upon activating their respective tyrosine kinase receptors, can engage the PI3-kinase/Akt, MAPK, and PLC-γ/PKC pathways. Thus, crosstalk between VEGF and insulin signaling may occur at numerous points. Our objectives were twofold: 1) to characterize the combined effects of insulin and VEGF on downstream elements, and 2) to determine the ability of signaling intermediates principally associated with either insulin or VEGF signaling to interact directly. After treatment with VEGF, insulin, or both, cells expressing both VEGF receptor-2 (KDR) and the insulin receptor were immunoprecipitated for total Akt and PLC-γ. Isolates from cells stimulated with both ligands demonstrated activation of PLC-γ and Akt that was less than additive over fifteen minutes. Conversely, cells pretreated with advanced glycation end products showed increased Akt phosphorylation. The effect of insulin on VEGF bioactivity was also measured by PLC-γ-mediated hydrolysis of phosphatidylinositol. These studies suggested suppressed VEGF activity in the presence of insulin. To examine direct signaling interactions, recombinant reagents capable of selective binding (via SH2 domains) to phosphorylated receptors were generated. Overall results showed relatively unaffected VEGF activity in the presence of insulin; however, this relationship is likely altered within the diabetic state.
- Developmental Regulation of Prion Expression in Cattle and Mouse Embryonic Stem CellsPeralta, Oscar A. (Virginia Tech, 2008-07-25)The host encoded cellular prion protein (PrPC) is an N-linked glycoprotein tethered to the cell membrane by a glycophosphatidylinositol (GPI) anchor. Under certain conditions, PrPC can undergo conversion into a conformationally-altered isoform (PrPSc) widely believed to be the pathogenic agent of transmissible spongiform encephalopathies (TSEs). Thus, tissues expressing PrPC are potential sites for conversion of PrPSc during TSE pathogenesis. Although much is known about the role of PrPSc in prion diseases, the normal function of PrPC is poorly understood. Lines of mice and cattle in which PrPC has been ablated by gene knockout show no major phenotypical alterations other than resistance to TSE infection. However, recent reports using Prnp-null mouse models have suggested the participation of PrPC in neural stem/progenitor cell proliferation and differentiation. The first objective in our study was to map the expression of PrPC in twenty six somatic and reproductive tissues in ruminants. Our second objective was to characterize the ontogeny of PrPC expression during bovine embryonic and early fetal development. Finally, we used a mouse embryonic stem cell (mESC) model to study the potential role of PrPC during neurogenesis. In adult tissues, intense expression of PrPC was detected in the central nervous system (CNS), thymus and testes, whereas the liver, striated muscle and female reproductive tissues showed the lowest expression. We observed that PrPC was associated with tissues undergoing cellular differentiation including spermatogenesis, lymphocyte activation and hair follicle regeneration. Analyses in bovine embryos and fetuses indicated peaks in expression of PrPC at days 4 and 18 post-fertilization, stages associated with the maternal-zygote transition and the maternal recognition of pregnancy and initiation of placental attachment, respectively. Later in development, PrPC was expressed in the CNS where it was localized in mature neurons of the neuroepithelium and emerging neural trunks. Based on these observations, we hypothesized that PrPC was involved in neurogenesis. We tested this hypothesis in a murine embryonic stem cell model (mESC). mESC were induced to form embryoid bodies (EBs) by placing them in suspension culture under differentiating conditions and allowed to differentiate in vitro for 20 days. We detected increasing levels of PrPC starting on day 12 (8.21- fold higher vs. day 0; P < 0.05) and continuing until day 20 (20.77-fold higher vs. day 0; P < 0.05). PrPC expression was negatively correlated with pluripotency marker Oct-4 (r= -0.85) confirming that mESC had indeed differentiated. To provide a more robust system for assessing the role of PrPC in neural differentiation, mESC were cultured with or without retinoic acid (RA) to encourage differentiation into neural lineages. Induction of EBs with retinoic acid (RA) resulted in an earlier up-regulation of PrPC and nestin (day 12 vs. day 16; P < 0.05). In addition, immunofluorescence studies indicated co-expression of PrPC and nestin in the same cells. The results of these experiments suggested a temporal link between PrPC expression and expression of nestin, a marker of neural progenitor cells. We next tested whether PrPC was involved in RA-enhanced neural differentiation from mESC using a PrPC knockdown model. Plasmid vectors designed to express either a PrP-targeted shRNA or scrambled, control shRNA were transfected into mESC. Stable transfectants were selected under G418 and cloned. PrP-targeted and control shRNA clones, as well as wild-type mESC, were differentiated in presence of RA and sampled as above. PrPC expression was knocked down in PrP-targeted shRNA cultures between days 12 and 20 (62.2 % average reduction vs. scrambled shRNA controls). Nestin expression was reduced at days 16 and 20 in PrPC knockdown cells (61.3% and 70.7%, respectively vs. scrambled shRNA controls). These results provide evidence that PrPC plays a role in the neural differentiation at a point up-stream from the stages at which nestin is expressed. In conclusion, the widely distributed expression of PrPC in ruminant tissues suggests an important biological role for this protein. In the present work we have provided evidence for the participation of PrPC in the differentiation of mESC along the neurogenic pathway.
- Differential Impact of VEGF and FGF2 Signaling Mechanisms on Flt1 Pre-mRNA SplicingPayne, Laura Beth (Virginia Tech, 2016-06-19)The human proteome is exponentially derived from a limited number of genes via alternative splicing, where one gene gives rise to multiple proteins. Alternatively spliced gene products, although crucial for normal physiology, are also linked to an increasing number of pathologies. Consequently, a growing focus is currently being placed on elucidating the extrinsic cues and ensuing signaling mechanisms which direct changes in gene splicing to yield functionally distinct proteins. Of note is the dysregulation of the vascular endothelial growth factor (VEGF) receptor, Flt1 and its soluble splice variants, sFlt1_v1 and sFlt1_v2, in the pregnancy-related disorder, preeclampsia. Preeclampsia is characterized by proteinuria and hypertension and is responsible for almost 600,000 maternal and fetal yearly deaths, worldwide. Here, we examined the impact of endothelial mitogens VEGF and FGF2 (fibroblast growth factor 2), both of which are upregulated in preeclampsia, on Flt1 transcript variants in umbilical vein endothelial cells. We tested the hypothesis that VEGF modulates the expression of Flt1 variants via the signaling kinase Akt and its impact on SR proteins. VEGF was observed to induce expression of overall Flt1 mRNA, principally as variants Flt1 and sFlt1_v1. Conversely, FGF2 induced a shift in splicing toward sFlt1_v2 without significant increase in overall Flt1. Based on inhibitor studies, the VEGF and FGF2 signals were transduced via ERK, but with the involvement of different upstream components. We mapped predicted SR protein binding to Flt1 pre-mRNA and identified two candidate proteins, SRSF2 and SRSF3, that may be involved in VEGF- or FGF2-induced Flt1 pre-mRNA splicing. Examination of SRSF2 and SRSF3 relative mRNA expression levels, following inhibition of VEGF- and FGF2-activated kinases, indicates that FGF2 significantly downregulates SRSF3 mRNA levels via PKC-independent activation of ERK. Additionally, our data suggest that FGF2 may impact Flt1 and sFlt1_v1 via SR protein kinases Akt and SRPK, while conversely regulating sFlt1_v2 levels via Clk. We did not find evidence of VEGF-induced Flt1 variant splicing via SR protein kinase activation or SRSF2 and SRSF3 mRNA levels. Thus, VEGF and FGF2 signals were tranduced via related but distinct mechanisms to differentially influence Flt1 pre-mRNA splicing. These findings implicate VEGF and FGF2 and their related intracellular signaling mechanisms in soluble Flt1 regulation.
- The direct injection of CRISPR/Cas9 system into porcine zygotes for genetically modified pig productionRyu, Junghyun (Virginia Tech, 2019-07-16)The pig has similar features to the human in aspects such as physiology, immunology, and organ size. Because of these similarities, genetically modified pigs have been generated for xenotransplantation. Also, when using the pig as a model for human diseases (e.g. cystic fibrosis transmembrane conductance regulator), the pig exhibited similar symptoms to those that human patients present. The main goal of this work was to examine the efficacy of direct injection of the CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/ CRISPR associated protein 9) in pigs and to overcome shortcomings that resulted after direct injection into the cytoplasm of developing zygotes. By using direct injection of CRISPR/Cas9 into developing zygotes, we successfully generated fetuses and piglets containing 9 different mutations. The total number of aborted fetuses was 20 and of live piglets was 55. Moreover, one issue that was encountered during the production of mutated pigs was that insertion or deletion (indel) mutations did not always introduce a premature stop codon because it did not interfere with the codon read. As a result of these triplet indel(s) mutations, a hypomorphic phenotype was presented; consequently, the mutated gene was partially functional. To prevent this hypomorphic phenotype, we introduced two sgRNAs to generate an intended deletion that would remove a DNA fragment on the genome by causing two double-strand breaks (DSB) during non-homologous end joining (NHEJ). The injection of two sgRNAs successfully generated the intended deletion on the targeted genes in embryos and live piglets. Results after using intended deletions, in IL2RG mutation pigs, did not show hypomorphic phenotypes even when a premature stop codon was not present. After using the intended deletion approach, function of the targeted genes was completely disrupted regardless of the presence or absence of a premature stop codon. Our next aim was to introduce (i.e. knock-in) a portion of exogenous (donor) DNA sequence into a specific locus by utilizing the homology direct repair (HDR) pathway. Because of the cytotoxicity of the linear form of the donor DNA, the concentration of the injected donor DNA was adjusted. After concentration optimization, four different donor DNA fragments targeting four different genes were injected into zygotes. Efficiency of knock-in was an average of 35%. Another donor DNA was used in this study which is IL2RG-IA donor DNA carried 3kb of exogenous cassette. It showed 15.6% of knock-in efficiency. IL2RG-IA Donor DNA injected embryos were transferred into surrogates, and a total of 7 pigs were born from one surrogate, but none of the 7 were positive for the knock-in. Future experiments need to be developed to optimize this approach. Overall, the direct injection of CRISPR/Cas9 is advantageous in cost, time, and efficiency for large animal production and for biomedical research. However, there are still unsolved challenges (off-targeting effects, low efficiency of knock-in, and monoallelic target mutation) that need to be elucidated for future application in humans and other species.
- The Dynamics of the Unreplicated DNA Checkpoint in Xenopus laevis Embryos and ExtractsAdjerid, Nassiba (Virginia Tech, 2008-03-25)When unreplicated or damaged DNA is present, cell cycle checkpoint pathways cause cell cycle arrest by inhibiting cyclin-dependent kinases (Cdks). In Xenopus laevis, early embryonic development consists of twelve rapid cleavage cycles between DNA replication (S) and mitosis (M) without checkpoints or gap phases. However, checkpoints are engaged in Xenopus once the embryo reaches the midblastula transition (MBT). At this point, the embryo initiates transcription, acquires gap phases between S and M phases, and establishes a functional apoptotic program. During the cell cycle, there are two main checkpoints that regulate entrance into S and M phases. The focus of this study is the role of protein kinase Chk1 and the phosphatase Cdc25A in the DNA replication checkpoint. In the absence of active Chk1, Cdc25A activates cyclin dependent kinases (Cdks) allowing the cell to progress into S or M phase. Chk1 regulates cell cycle arrest in the presence of unreplicated DNA in somatic cells by phosphorylating Cdc25A and leading to its degradation. Chk1 is also transiently activated at the MBT in Xenopus laevis embryos, even when there is no block to DNA replication or damaged DNA. One goal of this work is to understand the developmental role and regulation of checkpoint signaling pathways due to its monitoring of DNA integrity within the cell. Chk1 plays a critical but not fully understood role in cell cycle remodeling and early embryonic development. In order to understand the function and regulation of Chk1 in checkpoints, the features of the MBT that activate Chk1 must be identified. The activation of Chk1 by two time-dependent events in the cell cycle, the critical nuclear to cytoplasmic (N/C) ratio and the cyclin E/Cdk2 maternal timer are explored in this study. Embryos treated with aphidicolin, resulting in a halted replication fork and therefore a reduced DNA concentration, were tested for Chk1 activation and Cdc25A degradation. Chk1 and Cdc25A were observed to undergo activation and degradation, respectively, in embryos with a reduced DNA concentration. In addition, embryos were injected with Δ34Xic cyclin E/Cdk2 inhibitor, in order to disturb the maternal timer and tested for Chk1 activation and Cdc25A degradation. Both Chk1 and Cdc25A were unaffected by the disruption of the cyclin E/Cdk2 maternal time in the embryo. Therefore, the N/C ratio and the cyclin E/Cdk2 maternal timer do not affect Chk1 activation and therefore Cdc25A degradation. Another means of characterizing the unreplicated DNA checkpoint is through the use of mathematical modeling of the checkpoint-signaling cascade of the cell cycle. Mathematical modeling is the translating of biological pathways into mathematical equations that can simulate interactions without performing laboratory experiments. The Novák-Tyson checkpoint model made important predictions of hysteresis and bistability in the frog egg checkpoint model, predictions that were later confirmed experimentally. The model was updated with additional interactions, such as those including Myt1, a second inhibitor kinase, and lamin proteins, which become phosphorylated at the onset of nuclear envelope breakdown (NEB) at entry into mitosis. Also, experimental data was fit into the model while maintaining hysteresis and bistability. Therefore, the unreplicated DNA checkpoint model was updated with new interactions and experimental data while still preserving previously identified dynamic characteristics of the system. As described, Cdc25A regulation is dynamic in the embryo. The checkpoint original model represents the activity of Cdc25 phosphatase on the mitosis promoting factor (MPF) that leads the cell into mitosis. In the checkpoint model, Cdc25C is the phosphatase activating MPF. However, the model does not include Cdc25A, which is an integral part of the checkpoint-signaling pathway due to its role in activating the cyclin/Cdk complex allowing entry into S and possibly M phase. Experimental studies were performed in which Cdc25A levels were reduced in embryos and extracts using Cdc25A morpholinos. Embryos and extracts showed delayed cell cycle and mitotic entry, demonstrating the importance of Cdc25A plays in the cell cycle. Based upon experimental data, the mathematical model of the DNA replication checkpoint was expanded to include Cdc25A. The expanded model should more accurately demonstrate how checkpoints affect the core cell cycle machinery. Cdc25A was incorporated into the model by gathering experimental data and designing a signaling cascade, which was translated into differential equations. The updated model was then used to simulate the effect of synthesis and degradation rates of Cdc25A on the entry into mitosis dynamics. Therefore, using mathematical modeling and experimental design, we can further understand the role that Cdc25A plays in cell cycle progression during development. Understanding the regulation of Chk1 activity at the MBT and the role of Cdc25A in checkpoint signaling will help us further characterize the dynamics of early embryonic development. The use of mathematical modeling and experimental tools both contribute to further our understanding of controls of the checkpoint signaling pathway and therefore leading us one step closer to truly being able to model a pathway and make predictions as to the behavior of the cell during early embryonic development.
- Effects of Diethylstilbestrol on Murine Early Embryonic Stem Cell Differentiation Using an Embryoid Body Culture SystemLadd, Sabine Margaret (Virginia Tech, 2005-04-14)Objectives: The effects of estrogens on immune system formation and function are well documented. Diethylstilbestrol (DES), a synthetic estrogen, has been linked to neoplasia and immune cell dysfunction in humans and animals exposed in-utero. In-vitro effects of DES exposure of murine embryonic stem (ES) cells on the early embryonic immune system development and the expression of cellular surface markers associated with common hemangioblastic and hematopoietic precursors of the endothelial, lymphoid & myeloid lineages were investigated. Hypothesis: Early ES cell expression of CD45 a marker common to lymphoid lineage hematopoietic stem cells and differentiation of lymphoid lineage precursors are affected by in-vitro exposure to DES. Methods: Murine ES cells were cultured using a variety of techniques: an OP9 co-culture system, and formation of embryoid bodies (EBs) in a liquid medium and hanging drop system. The OP9 co-culture system did not appear to give rise to well differentiated lymphoid lineage cells during 12 days of differentiation. The hanging drop EB culture system, previously shown to promote differentiation of endothelial and lymphoid precursor cells, was chosen for further studies of ES cell differentiation. ES cells were harvested at five time points: undifferentiated (day 0), and differentiated (days 3, 8, 12 and 16). Differentiating ES cells were treated with DES beginning on day 3. The synthetic estrogen, DES, was chosen as a treatment because of its similar potency to 17β estradiol and documented association with neoplasia in women exposed in-utero. Surface marker expression, measured by real-time RT-PCR amplification, was recorded using fluorogenic TaqMan(R) probes designed specifically for the surface proteins of interest: oct4, c-Kit, Flk1, ERα, ERβ, CD45, Flt1, & VE-cadherin. Analysis & Results: Changes in surface marker gene expression between day 0 and day 16 of differentiation were analyzed using the RT-PCR threshold counts (CT) and the comparative threshhold cycle method. The expression of each target mRNA was normalized internally to a housekeeping gene (18s rRNA) and calculated relative to day 0. ANOVA (Type 3 fixed-effects analysis, SAS) was performed using the unexponentiated ΔΔCT values. The effects of DES, time, and the interaction between DES and time were evaluated for days 8, 12 and 16. Additionally, the effects of DES on the expression of each marker were evaluated for day 16. Expression of estrogen receptor receptor α & β (ERα & β) in the EBs was established, and did not appear to be affected at any time by treatment with DES. ERα was expressed in significant levels on day 16, while ERβ was expressed in low levels throughout the period of differentiation. The expression of the cell surface marker, c-Kit was significantly (P<0.0001) altered by the presence of DES between the three time points sampled. The expression of the VEGF receptor, Flt1, and the adhesion molecule, VE-cadherin, markers of endothelial cells, were also significantly (P<0.026) altered by treatment with DES on day 16 of differentiation. Treatment with DES appeared to have no effect on the expression of CD45, a marker common to lymphoid precursor cells. Conclusions: These results indicate the presence of estrogen receptors in differentiating ES cells as early as day three in-vitro (ERβ) until day 16 (ERα). DES alters expression of common hemangioblastic and hematopoietic precursor, as well as endothelial lineage markers, but has no effect on expression of the marker of lymphoid lineage development before day 16. These effects coincided with the expression of ERα. The enduring effects of DES exposure in-utero may not be manifest in this ES model, or may occur at later stages of differentiation or in selected subpopulations of CD45+ cells.
- Effects of Energy Balance on Ovarian Activity and Recovered Oocytes in Holstein Cows Using Transvaginal Follicular AspirationKendrick, Kerry Wyn II (Virginia Tech, 1997-05-12)The effects of energy balance on hormonal patterns and recovered oocytes were evaluated in 20 lactating Holstein cows during two trial periods (fall/spring). Cows were randomly selected and assigned to one of two dietary treatments formulated so that cows consumed 3.6% BW (HE- 1.78 mcal/kg; n=6 in fall, n=5 in spring) and 3.2% BW (LE-1.52 mcal/kg; n= 5 in fall, n=4 in spring). Body weight and body condition score (BCS) were recorded prior to parturition and weekly throughout the fall trial. Ultrasound guided transvaginal follicular aspirations were conducted twice weekly between d 30 and 100 of lactation. Follicle size and number were recorded. Follicular fluid (FF) was aspirated from the largest follicle, and serum samples were collected for hormone assay (IGF-1; estradiol (E2); progesterone (P4, serum ); LH and FSH). Oocytes were collected and graded based upon cumulus density and ooplasm homogeneity, then fertilized and cultured in vitro. Milk yield averaged 41.64 ± .3 kg/d (mean ± SE) for HE and 32.8 ± .3 kg/d for LE. There was a significant cubic day postpartum by treatment interaction for milk yield. Dry matter intake and BW treatment by week interactions were significant for the cubic and linear components, respectively. Oocyte numbers increased linearly from d 30 to 100 postpartum. HE cows produced more good + oocytes (1.5 ± .2 ) than LE cows (1.4 ± .1). Follicles less than or equal to 5 mm predominated throughout the study (6.4 ± 3.0). However, greater numbers of follicles 10 to 14 mm and greater than or equal to 15 mm were found in the fall (1.98 ± .08 and .50 ± .06) than spring (1.11 ± .3 and .23 ± .07). Follicular fluid IGF-1 was higher in HE (2.3 ± .2 ng/ml) than in LE cows (1.6 ± .2 ng/ml). Mean basal serum FSH concentration was lower at 28 d postpartum (173 ± 8 pg/ml) compared to later (521 ± 25 at d 60 and 650 ± 25 pg/ml at d 110). Serum P4 peaked at 35 d postpartum, with HE cows having 1 ng/ml higher P4 than LE cows. Low dietary energy reduced milk yield, DMI, BCS, FF IGF-1 and serum P4 and had a negative impact on oocyte quality.
- Effects of Trimethylamine N-Oxide on Mouse Embryonic Stem Cell PropertiesBarron, Catherine Mary (Virginia Tech, 2020-08-06)Trimethylamine N-oxide (TMAO) is a metabolite derived from dietary choline, betaine, and carnitine via intestinal microbiota metabolism. In several recent studies, TMAO has been shown to directly induce inflammation and reactive oxygen species (ROS) generation in numerous cell types, resulting in cell dysfunction. However, whether TMAO will impact stem cell properties remains unknown. This project aims to explore the potential impact of TMAO on mouse embryonic stem cells (mESCs), which serve as an in vitro model of the early embryo and of other potent stem cell types. Briefly, mESCs were cultured in the absence (0mM) or presence of TMAO under two different sets of treatment conditions: long-term (21 days), low-dose (20µM, 200µM, and 1000µM) treatment or short-term (5 days), high-dose (5mM, 10mM, 15mM) treatment. Under these treatment conditions, mESC viability, proliferation, and stemness were analyzed. mESC properties were not negatively impacted under long-term, low-dose TMAO treatment; however, short-term, high-dose treatment resulted in significant reduction of mESC viability and proliferation. Additionally, mESC stemness was significantly reduced when high-dose treatment was extended to 21 days. To investigate an underlying cause for TMAO-induced loss in mESC stemness, metabolic activity of the mESCs under short-term, high-dose TMAO treatment was measured with a Seahorse XFe96 Analyzer. TMAO treatment significantly decreased the rate of glycolysis, and it increased the rate of compensatory glycolysis upon inhibition of oxidative phosphorylation (OxPHOS). It also significantly increased the rate of OxPHOS, maximal respiratory capacity, and respiratory reserve. These findings indicate that TMAO induced a metabolic switch of mESCs from high glycolytic activity to greater OxPHOS activity to promote mESC differentiation. Additionally, TMAO resulted in increased proton leak, indicating increased oxidative stress, and elucidating a potential underlying mechanism for TMAO-induced loss in mESC stemness. Altogether, these findings indicate that TMAO decreases stem cell potency potentially via modulation of metabolic activity.
- Endothelial Cell-Specific Knockout of Meis1 Protects Ischemic Hindlimb Through Vascular RemodelingChen, Miao (Virginia Tech, 2018-06-28)Peripheral artery disease (PAD) affects more than 200 million people worldwide. PAD refers to illness due to a reduction or complete occlusion of blood flow in the artery, especially to the extremities in disease conditions, such as atherosclerosis or diabetes. Critical limb ischemia (CLI) is a severe form of PAD associated with high morbidity and mortality. Currently, no effective and permanent treatments are available for this disease. The current endovascular medications (e.g., angioplasty or stents) only relieve the clinical symptoms while the surgical therapies (e.g., bypass or endarterectomy) require grafting vessels from a healthy organ to the diseased limb of the patient. However, even with these therapeutic techniques, 30% of patients still undergo limb amputation within a year. Thus, understanding of disease mechanism and development of new therapeutic approaches are in urgent needs. Meis1 (myeloid ecotropic viral integration site 1) gene belongs to the three-amino-acid loop extension subclass of homeobox gene families, and it is a highly conserved transcription factor in all eukaryotes. Up to date, little is known about the role of Meis1 in regulating vascular remodeling under ischemic condition. In this study, we aim to investigate the role and underlying mechanism of Meis1 in the regulation of arteriogenesis and angiogenesis using hindlimb ischemia model of transgenic neonatal mice. The long-term goal is to develop a new treatment for patients with PAD. Three separate but related studies were planned to complete the proposed research aims. To better understand the role of Meis1, we reviewed, in the first chapter, all literature relevant to the recent advances of the Meis1 in normal hematopoiesis, vasculogenesis, and heart developments, which were mostly studied in zebrafish and mouse. Briefly, Meis1 is found to be highly expressed in the brain and retina in zebrafish and additional in the heart, nose, and limb in mouse during the very early developmental stage, and remains at a low level quickly after birth. Meis1 is necessary for both primitive and definitive hematopoiesis and required for posterior erythroid differentiation. The absence of Meis1 results in a severe reduction of the number of mature erythrocytes and weakens the heart beats in zebrafish. Meis1 deficiency mouse is dead as early as E11.5 due to the severe internal hemorrhage. In addition, Meis1 is essential in heart development. Knock-down of Meis1 can promote angiotensin II-induced cardiomyocytes (CMs) hypertrophy or CMs proliferation, which can be repressed by a transcription factor Tbx20. Meis1 appears to play a complicated role in the blood vessels. Although the major blood vessels are still normal when global deletion of Meis1, the intersegmental vessel cannot be formed in Meis1 morphants in the zebrafish, and the small vessels are either too narrow or form larger sinuses in Meis1 deficient mouse. The effects of Meis1 on the vascular network under normal and disease (ischemia) condition remain largely unknown, and the existing data in this field is limited. In the second chapter, we developed a method protocol to identify mice of all ages, especially neonates that we faced methodological difficulties to easily and permanently label prior to our major experiments. In this study, single- or 2-color tattooing (ear, tail, or toe or combinations) was performed to identify a defined or unlimited number of mice, respectively. Tail tattooing using both green and red pastes was suitable for identifying white-haired neonatal mice as early as postnatal day (PND) 1, whereas toe tattooing with green paste was an effective alternative approach for labeling black-haired mouse pups. In comparison, single-color (green) or 2-color (green and red) ear tattooing identified both white and black adult mice older than three weeks. Ear tattooing can be adapted to labeling an unlimited number of adult mice by adding the cage number. Thus, tattooing various combinations of the ears, tail, and toes provides an easy and permanent approach for identifying mice of all ages with minimal disturbance to the animals, which shows a new approach than any existing method to identify mouse at all ages, especially the neonatal pups used in the present study (Chapter 4). Various formation of hindlimb ischemia with ligations of femoral artery or vein or both have been reported in the literature. The ischemic severity varies dependent on mouse strains and ligation methods. Due to the tiny body size of our experimental neonatal mice (PND2), it is technically challenging to separate the femoral artery from femoral vein without potential bleeding. In the third chapter, we aimed to explore a suitable surgical approach that can apply to neonatal mice. To this end, we compared the effects of femoral artery/vein (FAV) excision vs. femoral artery (FA) excision on hindlimb model using adult CD-1 mice. We showed during the 4-week period of blood reperfusion, no statistically significant differences were found between FAV and FA excision-induced ischemia regarding the reduction of limb blood flow, paw size, number of necrotic toes, or skeletal muscle cell size. We conclude that FAV and FA excision in CD-1 mice generate a comparable severity of hindlimb ischemia. In other words, FAV ligation is no more severe than FA ligation. These findings provide valuable information for researchers when selecting ligation methods for their neonate hindlimb models. Based on these findings, we selected FAV ligation of hindlimb ischemia approach to study the function of Meis1 in vascular remodeling of neonatal mice. In the fourth chapter (the main part of my dissertation), we investigated the roles of Meis1 in regulating arteriogenesis and angiogenesis of neonatal mouse under the ischemic condition. To this end, endothelial cell-specific deletion of Meis1 was generated by cross-breeding Meis1flox/flox mice with Tie2-Cre mice. Wild-type (WT, Meis1f/f) and endothelial cell-specific knock-out (KO, Meis1ec-/-Tie2-Cre+) C57BL/6 mice at the age of PND2 were used. Under the anesthesia, the pups were subject to hindlimb ischemia by excising FAV. Laser Doppler Imager was used to measure the blood flow pre- and post-surgery up to 28 days. Toe necrosis, skeletal regeneration, and vascular distributions were examined at the end of experiments (PND28 post-ischemia). Surprisingly, during 4-week periods after ischemia, the blood flow ratios (ischemic vs. control limb) in KO mice significantly increased compared to WT on PND14 and PND28, suggesting the inhibitory effects of Meis1 on blood flow recovery under ischemic condition. Meanwhile, WT mice showed more severe necrotic limb (lower ratio of limb length and area, and higher necrotic scores at PND7) than those in the KO mice. Furthermore, significant increases in diameters of Dil-stained arterioles of the skin vessel and the vessels on the ligation site were observed in KO mice, indicating the enhanced arteriogenesis in KO mice. To investigate the underlying mechanism, RNA from the ischemia and control limb was extracted and q-PCR was used to study the potential genes involved in the mechanism. Casp3 and Casp8 were found downregulated showing less apoptosis in the KO mice. On the other hand, endothelial cells (ECs) were isolated from the lungs of 3-5 WT and KO neonates using CD31 Microbeads. CD31+ cells were plated and treated with 0, 0.5, and 1μM doxorubicin for 24 hours and analyzed with various assays. Meis1-KO ECs demonstrated higher cell viability and formed a higher number of vascular tubes than those in WT ECs following 0.5μM Dox treatment, presenting the potential ability of angiogenesis in KO-ECs. Furthermore, the increased viability in KO ECs may be due to the decreased expression or activities of Casp8 and Casp3. In conclusion, my present studies have developed a new methodology to easily and permanently identify all mice at any ages. The insignificant differences between FAV and FA ligations suggest that a relative-easy surgical approach could be used to generate hindlimb ischemic model, which potentially reduces the cost, decreases the surgical time and prevents damage of femoral nerve from surgical tools. More importantly, by using transgenic mice, we found that Meis1-KO dramatically increased blood flow and protected the ischemic hindlimb through vascular remodeling. Obviously, the molecular and cellular mechanisms underlying the above beneficial effects appear complicated and likely to involve multiple cellular remodeling processes and molecular signaling pathways to enhance arteriogenesis and angiogenesis and/or reduce cellular apoptosis through Meis1-mediated pathways. Our study demonstrated that under ischemic condition, knockout of Meis1 increases expression of Hif1a, which then activates Agt or VEGF, thus enhances arteriogenesis or angiogenesis; In addition, knockout of Meis1 activates Ccnd1, which subsequently promotes regeneration of skeletal muscle, and reduces expression of Casp8 and Casp3, thus preventing limb tissue from ischemia-induced apoptosis. Our innovative findings offer great potential to ultimately lead to new drug discovery or therapeutic approaches for prevention or treatment of PAD.
- Evaluation of Different Concentrations of Egg Yolk in Canine Frozen Semen ExtenderTrout, Stephanie Williams (Virginia Tech, 2013-01-09)This study tested different concentrations of egg yolk in canine freezing extender void of glycerol, a commonly used cryoprotectant, by examining the motility and morphology throughout the freezing process: initial (baseline after extender added), post-cool (after three hours at 5"C) and post-thaw (after freezing.) Initial values of pH, osmolarity, motility and morphology were obtained for comparison of the samples. Spermatozoa from six normal dogs as determined by progressive linear motility > 70% and normal morphology > 60% was used. Semen was collected and pooled for five freezing trials. The concentrations of egg yolk used in the extender were: 0%, 10%, 20%, 30% and 40%. Assessment of each sample was blinded to the treatments until all results were obtained and statistics had been analyzed. Based on this study a 20% egg yolk concentration is slightly superior to a 30% egg yolk concentration when assessing post-thaw motility, morphology and longevity and significantly superior to a 0%, 10% or 40% egg yolk concentration. The study also showed motility and normal post-cool and post-thaw sperm morphology did not always correlate. Utilization of 0% and 10% concentrations of egg yolk has negative effects on semen quality as measured by the motility and/or morphology. Results confirm freezing does not affect secondary sperm abnormalities, abnormalities of the tail and distal section of the middle piece, during cooling or freezing. Primary abnormalities, abnormalities of the head and midpiece, increased in the 0% extender during cooling and all extenders during freezing. The pH of the extenders before the addition of sperm was significantly different. Once sperm was added to the extenders, there was no longer a significant difference in pH. There was a positive correlation for both motility and normal morphology percentages post-cool and post-thaw for the extenders with similar osmolarity to the semen.
- Fusion of bovine fibroblasts to mouse embryonic stem cells: a model to study nuclear reprogrammingVillafranca Locher, Maria Cristina (Virginia Tech, 2018-04-20)The cells from the inner cell mass (ICM) of an early embryo have the potential to differentiate into all the different cell types present in an adult organism. Cells from the ICM can be isolated and cultured in vitro, becoming embryonic stem cells (ESCs). ESCs have several properties that make them unique: they are unspecialized, can self-renew indefinitely in culture, and given the appropriate cues can differentiate into cells from all three germ layers (ecto-, meso-, and endoderm), including the germline, both in vivo and in vitro. Induced pluripotent stem cells (iPSCs) can be generated from adult, terminally differentiated somatic cells by transient exogenous expression of four transcription factors (Oct4, Sox2, Klf4, and cMyc; OSKM) present normally in ESCs. It has been shown that iPSCs are equivalent to ESCs in terms of morphology, gene expression, epigenetic signatures, in vitro proliferation capacity, and in vitro and in vivo differentiation potential. However, unlike ESCs, iPSCs can be obtained from a specific individual without the need for embryos. This makes them a promising source of pluripotent cells for regenerative medicine, tissue engineering, drug discovery, and disease modelling; additionally, in livestock species such as the bovine, they also have applications in genetic selection, production of transgenic animals for agricultural and biomedical purposes, and species conservancy. Nevertheless, ESC and iPSC lines that meet all pluripotency criteria have, to date, only been successfully produced in mice, rats, humans, and non-human primates. In the first part of this dissertation, we attempted reprogramming of three types of bovine somatic cells: fetal fibroblasts (bFFs), adult fibroblasts (bAFs), and bone marrow-derived mesenchymal stem cells (bMSCs), using six different culture conditions adapted from recent work in mice and humans. Using basic mouse reprogramming conditions, we did not succeed in inducing formation of ESC-like colonies in bovine somatic cells. The combination of 2i/LIF plus ALK5 inhibitor II and ascorbic acid, induced formation of colony-like structures with flat morphology, that occasionally produced trophoblast-like structures. These trophoblast-like vesicles did not appear when an inhibitor of Rho-associated, coiled-coil containing protein kinase 1 (ROCK) was included in the medium. We screened for expression of exogenous OSKM vector with RT-PCR and found upregulation of OSKM vector 24h after Dox was added to the medium; however, expression was sharply decreased on day 2 after Dox induction, and was not detectable after day 3. In a separate experiment, we induced reprogramming of bFF and bAFs using medium supplemented with 50% of medium conditioned by co-culture with the bovine trophoblast CT1 line. These cells expressed both OCT4 and the OSKM vector 24h after Dox induction. However, similar to our previous observations, both markers decreased expression until no signal was detected after day 3. In summary, we were unable to produce fully reprogrammed bovine iPSCs using mouse and human protocols, and the exact cause of our lack of success is unclear. It is possible that a different method of transgene expression could play a role in reprogramming. However, these ideas would be driven by a rather empirical reasoning, extrapolating findings from other species, and not contributing in our understanding of the particular differences of pluripotecy in ungulates. Our inability to produce bovine iPSCs, combined with the only partial reprogramming observed by others, justifies the need for in depth study of bovine pluripotency mechanisms, before meaningful attempts to reprogram bovine somatic cells to plutipotency are made. Therefore, we focused on getting a better understanding of bovine nuclear reprogramming. This would allow us to rationally target the specific requirements of potential bovine pluripotent cells. Cell fusion is a process that involves fusion of the membrane of two or more cells to form a multinucleated cell. Fusion of a somatic cell to an ESC is known to induce expression of pluripotency markers in the somatic nucleus. In the second part of this dissertation, we hypothesized that fusion of bFFs to mouse ESCs (mESCs) would induce expression of pluripotency markers in the bFF nucleus. We first optimized a cell fusion protocol based on the use of polyethylene glycol (PEG), and obtained up to 11.02% of multinucleated cells in bFFs. Next, we established a method to specifically select for multinucleated cells originated from the fusion of mESCs with bFFs (heterokaryons), using indirect immunofluorescence. With this in place, flow cytometry was used to select 200 heterokaryons which were further analyzed using RNA-seq. We found changes in bovine gene expression patterns between bFFs and heterokaryons obtained 24h after fusion. Focusing on the bovine transcriptome, heterokaryons presented upregulation of early pluripotency markers OCT4 and KLF4, as well as hypoxia response genes, contrasted with downregulation of cell cycle inhibitors such as SST. The cytokine IL6, known to increase survival of early embryos in vitro, was upregulated in heterokaryons, although its role and mechanism of action is still unclear. This indicates that the heterokaryon cell fusion model recapitulates several of the events of early reprogramming, and can therefore be used for further study of pluripotency in the bovine. The cell fusion model presented here can be used as a tool to characterize early changes in bovine somatic nuclear reprogramming, and to study the effect of different reprogramming conditions on the bovine transcriptome.
- Gene Expression in Endometrial Tissues of Normal Mares and Mares With Delayed Uterine ClearanceGray, Giles Anthony (Virginia Tech, 2006-04-04)Delayed uterine clearance (DUC) is a significant problem contributing to subfertility and infertility in the mare, characterized by an accumulation of fluid and inflammatory debris in the uterine lumen following breeding events, venereal disease or an estral cycle. This syndrome is typically seen in older, multiparous mares and mares with poor reproductive tract conformation. The etiopathogenesis of DUC has not been fully elucidated but suggested causes include poor genital conformation, a cranioventrally tilted uterus, defective myometrial contractions, decreased intrauterine immune activity, inappropriate lymphatic drainage or mucus overproduction. The objective of this research was to evaluate gene expression of selected genes in endometrial tissue samples taken from three categories of mares (young fertile [YF], older clinically normal [ON] and older susceptible [OS]). The genes assayed in this research were oxytocin receptor, PGF2á receptor and progesterone receptor. The expression of each of these genes was normalized using the expression of two housekeeping genes, beta actin and ribosomal 18S RNA. Quantitative real-time polymerase chain reaction (QPCR) was used to evaluate gene expression of the selected genes. Results indicated that there was no statistically significant difference in the expression of any of the three experimental genes among any of the three categories of mares. From this research, the direction of further research regarding the pathogenesis of DUC can be made: myometrial tissues can be assayed for similar genes, the expression of other genes regulating myometrial contraction can be assayed or the expression of uterorelaxants can be studied.
- Homing and Differentiation of Mesenchymal Stem Cells in 3D In Vitro ModelsPopielarczyk, Tracee (Virginia Tech, 2017-08-31)Mesenchymal stem cells (MSCs) have great potential to improve clinical outcomes for many inflammatory and degenerative diseases through delivery of exogenous MSCs via injection or cell-laden scaffolds and through mobilization and migration of endogenous MSCs to injury sites. MSC fate and function is determined by microenvironmental cues, specifically dimensionality, topography, and cell-cell interactions. MSC responses of migration and differentiation are the focus of this dissertation. Cell migration occurs in several physiological and pathological processes; migration mode and cell signaling are determined by the environment and type of confinement in three-dimensional (3D) models. Tendon injury is a common musculoskeletal disorder that occurs through cumulative damage to the extracellular matrix (ECM). Studies combining nanofibrous scaffolds and MSCs to determine an optimal topographical environment have promoted tenogenic differentiation under various conditions. We investigated cellular response of MSCs on specifically designed nanofiber matrices fabricated using a novel spinneret-based tunable engineered parameters production method (STEP). We designed suspended and aligned nanofiber scaffolds to study cellular morphology, tendon marker gene expression, and matrix deposition as determinants for tendon differentiation. The delivery and maintenance of MSCs at sites of inflammation or injury are major challenges in stem cell therapies. Enhancing stem cell homing could improve their therapeutic effects. Homing is a process that involves cell migration through the vasculature to target organs. This process is defined in leukocyte transendothelial migration (TEM); however, far less is known about MSC homing. We investigated two population subsets of MSCs in a Transwell system mimicking the vasculature; migrated cells that initiated transmigration on the endothelium and nonmigrated cells in the apical chamber that failed to transmigrate. Gene and protein expression changes were observed between these subsets and evidence suggests that multiple signaling pathways regulate TEM. The results of these experiments have demonstrated that microenvironmental cues are critical to understanding the cellular and molecular mechanisms of MSC response, specifically in homing and differentiation. This knowledge has identified scaffold parameters required to stimulate tenogenesis and signaling pathways controlling MSC homing. These findings will allow us to target key regulatory molecules and cell signaling pathways involved in MSC response towards development of regenerative therapies.
- Improving the development of bovine in vitro produced embryos cultured individuallyGibson, Bethany Gale (Virginia Tech, 2014-07-30)Previous research in bovine embryology has found that embryos cultured individually have limited ability to develop compared to their counterparts cultured in a group of other embryos. This investigation aimed to find if any of three different interventions over two experiments would increase development of individually cultured embryos to that of group cultured embryos. In the first experiment both the addition of serum/serum replacer and a co-culture with bovine granulosa cells were applied to individually cultured embryos in a 3x2 design. None of the interventions was found to be significantly different from the others, and all resulted in significantly lower development than embryos cultured as a group (avg. 4.7 +/- 1.93% individual vs. 21.7 +/- 3.76% group). However, a significant difference was found in the hatching rate between blastocysts cultured in media including cells (71.4 +/- 17.07%) and those cultured without cells (18.1 +/- 11.63%). In the second experiment, embryos were either cultured in standard droplets or microwells made at the bottom of culture droplets either in groups or individually for a 2x2 design. This experiment experienced poor development in all treatments including the group control, and none of the treatments were found to be significantly different from each other. However, the hatching rate of blastocysts cultured in multiple microwells was significantly higher than those cultured individually in droplets. To summarize, none of the treatments increased the development rate, but embryos cultured with granulosa cell co-cultures and in group microwells showed improvements in hatching rates.
- In vitro assessment of fertilization and embryo development with Bovine spermatozoa after scrotal insulationWalters, Anneke H. (Virginia Tech, 2004-11-12)Fertilization and cleavage of bovine embryos depend not only on maternal involvement, but also on the paternal contributions that involve more than just providing the haploid male genome. Therefore, the overall objective of this project was to determine the impact of morphologically abnormal spermatozoa on fertilization, subsequent embryonic development, and embryo quality at the cellular level. Four experiments used morphologically abnormal semen samples collected and cryopreserved from four Holstein bulls before (Pre) and after a scrotal insulation (PI) period of 48 h. Zygotes were cultured for 8 d when a developmental score was assigned to each embryo; subpopulations were subjected to either the TUNEL or caspase assays to determine apoptosis. In the final experiment pronuclear decondensation for presumptive zygotes was evaluated by differential interference contrast microscopy at 3 h time intervals from 6 to 18 h post in vitro insemination (hpi). Morphological evaluation of semen samples revealed a decrease (P < 0.01) in the percentages of normal spermatozoa in the PI samples in comparison with the Pre samples for Bulls I and Bull III (74 to 22.3% and 67.7 to 0.5 %, respectively) and the scrotal insulation effects persisted from the time of cleavage through blastocyst formation for Bulls I and III and corresponded with a similar decrease in blastocyst development for PI samples in experiment 1 regardless of which semen separation method was used. Likewise, the overall pronuclear decondensation rate for the PI zygotes of Bull I and III showed no increase over time and remained predominantly at PN1 stage (1.5 ± 0.17; 1.8 ± 0.22, respectively). In contrast, the development for Bull II and Bull IV were unaffected. The embryo quality assessment revealed that the caspase intensity increased significantly for both Bull I (217 ± 147) and Bull III (229 ± 98) for the PI embryo groups compared to those of Bull II (98 ± 115) and Bull IV (90 ± 111). In conclusion, the tested separation methods used seemed inadequate in their ability to provide potentially competent sperm for IVF. The decrease in embryonic development appears to be multifaceted and related to the changes in head shape morphology and we suggest the failure in normal pronuclear formation is associated with an absence of normal decondensation of the penetrating spermatozoon. The inability to consistently measure apoptosis in early stage embryos complicates the assessment of differences in embryo quality. These observations support the hypothesis of uncompensable seminal traits in IVF with abnormal spermatozoa and provide compelling evidence that the effect of morphologically abnormal spermatozoa occurred prior to cleavage, thus is manifested during the early stages of fertilization.
- In Vitro Models of Cellular Dedifferentiation for Regenerative MedicineWilliams, Kaylyn Renee (Virginia Tech, 2018-06-22)Stem cells have the ability to self-renew and to differentiate into a variety of cell types. Stem cells can be found naturally in the body, can be derived from the inner cell mass of blastocysts, or can be made by dedifferentiation of adult cells. Regenerative medicine aims to utilize the potential of stem cells to treat disease and injury. The ability to create stem cell lines from a patient's own tissues allows for transplantation without immunosuppressive therapy as well as patient-specific disease modeling and drug testing. The objective of this study was to use cellular dedifferentiation to create in vitro cell lines with which to study regenerative medicine. First, we used siRNA targeted against myogenin to induce the dedifferentiation of murine C2C12 myotubes into myoblasts. Timelapse photography, immunofluorescence, and western blot analysis support successful dedifferentiation into myoblasts. However, the inability to separate the myotubes and myoblasts prior to siRNA treatment confounded the results. This system has the potential to be used to study mechanisms behind muscle cell regeneration and wound healing, but a better method for separating out the myoblasts needs to be developed before this will be achievable. Second, we used a doxycycline-inducible lentiviral vector encoding the transcription factors Oct4, Sox2, cMyc, and Klf4 to create a line of naive-like porcine induced pluripotent stem cells (iPSCs). This reprogramming vector was verified first in murine cells, the system in which it was developed. Successful production of both murine and porcine iPSC lines was achieved. Both showed alkaline phosphatase activity, immunofluorescence for pluripotency marker (Oct4, Sox2, and Nanog) expression, PCR for upregulation of endogenous pluripotency factors (Oct4, Sox2, cMyc, Klf4, and Nanog), and the ability to form embryoid bodies that expressed markers of all three germ layers. Additionally, we were able to create secondary porcine iPSC lines by exposing cellular outgrowths from embryoid bodies to doxycycline to initiate more efficient production of porcine iPSCs. The secondary porcine iPSCs were similar to the primary porcine iPSCs in their morphology, behavior, alkaline phosphatase expression, and Nanog expression with immunofluorescence. The porcine iPSCs were dependent on doxycycline to maintain pluripotency, indicating that they are not fully reprogrammed. Despite this dependence on doxycyline, this system can be used in the future to study the process of reprogramming, to develop directed differentiation protocols, and to model diseases.